Тиристорные и симисторные стабилизаторы напряжения — в чем отличие?

Коммутация тиристора

Для перехода тиристора в закрытое состояние ток нагрузки должен снизиться ниже значения тока удержания IH на время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.

Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IH достаточное время.

Обратите внимание, что значение IH указывается для температуры перехода 25 °C и, подобно IL, оно уменьшается при повышении температуры. Поэтому для успешной коммутации цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода

Симисторный стабилизатор напряжения

Симистор — это одна из разновидностей тиристора, и с точки зрения обычного пользователя симисторный стабилизатор напряжения полностью аналогичен тиристорному. Однако главным недостатком симистора является его низкая устойчивость к выбросам напряжения, например, при работе с индуктивной нагрузкой, и поэтому приходится предпринимать ряд дополнительных мер для обеспечения надёжности их работы.

Кроме вышесказанного в симисторных схемах управления при максимальных нагрузках необходимо тщательно контролировать и не допускать превышения тока и напряжение управляющего электрода, обеспечивать эффективное охлаждение корпуса прибора и учитывать рассеивание мощности.

Вследствие этих недостатков симисторные стабилизаторы напряжения ограничены в практическом применении, так как тиристорные более надёжны в работе и компактны в габаритах, например, один симистор занимает площадь 4-6 тиристоров. Справедливости ради надо отметить, что для управления симистором требуется менее сложная электронная схема, чем для тиристора, но это преимущество блекнет в сравнении с основным недостатком.

Принцип работы

Тиристорные стабилизаторы работают по тому же ступенчатому принципу, что и релейные, рассмотренные ранее. Отличие заключается в том, что роль контактов электромеханических реле играют электронные управляемые ключи — тиристоры.

Тиристор представляет собой полупроводниковый прибор, имеющий три электрода — анод, катод и электрод управления. И в зависимости от наличия сигнала управления, он может находиться в закрытом или открытом состоянии. Проводимость в данной схеме имеет односторонний характер. В открытом состоянии движение электрического тока происходит от анода к катоду. Для использования этих электронных ключей в схемах переменного тока обычно поступают следующим образом. Два тиристора соединяют по так называемой встречно-параллельной схеме, то есть, анод одного прибора соединяют с катодом другого и наоборот.

В результате получается комбинированный ключ, обеспечивающий проводимость в обоих направлениях. Аналогично релейным приборам, каждый тиристорный ключ управляет только одной отпайкой вторичной обмотки автотрансформатора и одновременное открытие нескольких ключей не допускается.

Управление тиристорными ключами осуществляется электронным блоком. Алгоритм работы системы управления аналогичен тому, что применяется в релейных стабилизаторах. Система осуществляет постоянный контроль уровня напряжения и при его отклонении подаёт сигнал на открывание соответствующего ключа.

Отличия тиристорных стабилизаторов от релейных

Тиристорные и релейные стабилизаторы являются 2-мя самыми популярными типами стабилизаторов на российском рынке.
Они относятся к группе электронных устройств преобразования напряжения, наряду с симисторными, инверторными и феррорезонансными моделями.

Принцип работы и тиристорного и релейного стабилизатора аналогичен.
Эти полупроводниковые устройства используют для коммутации обмотки трансформатора различные ключи – тиристорные или релейные.
Регулировка напряжения в обоих типах происходит ступенчато, что визуально заметно по морганию ламп накаливания.
Вот только переключение симисторов и тиристоров происходит бесшумно, а реле немного пощелкивает.

Какие же основные отличия в работе этих двух типов между собой?
Правда ли, что тиристорные модели дороже, но надёжнее релейных?

Реле и тиристоры: в чём отличия?

  • Итак, разберём основные отличия между релейными и тиристорными стабилизаторами.
  • Реле работают шумнее, щелкают при переключении контактов. Тиристоры работают бесшумно, подходят для установки в любых помещениях.
  • При переключении реле более заметны изменения в освещении, моргание ламп накаливания.
  • Реле занимают в разы больше места, чем компактные тиристоры, но не нуждаются в радиаторах охлаждения.
  • Реле менее термостойки, а тиристоры чаще применяются в морозоустойчивых стабилизаторах для работы в неотапливаемых помещениях.
  • К перегрузкам реле относятся более лояльно, чем тиристоры, критичные к перегрузкам.
    Поэтому тиристоры ставят с большим запасом по характеристикам, разрабатывают разные схемотехнические ухищрения, чтобы режим их работы не нарушался и они массово не выгорали.
    Цена из-за этого на тиристорные стабилизаторы еще больше увеличивается.
  • Реле имеют открытую коммутацию, сопровождающуюся искрением и подгоранием контактов.
    Во многом по этой причине тиристоры многими считаются более надёжными, имеют длительную гарантию производителя.
  • Т.к. у тиристорных моделей ключи более компактные, то их можно больше разместить в одном стабилизаторе.
    С увеличением количества ключей повышается точность стабилизации напряжения.
    Например, стабилизатор с 36-ю ступенями регулировки позволяет снизить погрешность стабилизации до 1,5% – модели
    Энерготех TOP 12000 и
    Вольт ГЕРЦ Э 36-1/40.
    Есть даже тиристорные стабилизаторы LIDER серии “SQ-DeLUXe”.
    Они имеют целых 120 ступеней стабилизации!
    Это позволяет достичь максимальной точности напряжения – 220В ± 0,5%.

Надёжнее ли тиристоры?

Можно ли сказать, что тиристорный тип стабилизаторов в целом надёжнее релейного?
Да, если имеются ввиду релейные стабилизаторы китайского производства.
Многое зависит от качества непосредственно релейных и тиристорных ключей, системы их охлаждения и продуманности микропроцессорного управления.
Например, если производитель тиристорной модели сэкономил на её защите от импульсных скачков, то тиристоры может пробить высокое напряжение и они выйдут из строя.
У релейных моделей частой проблемой является подгорание релейных контактов из-за частого переключения под напряжением.
Для устранения указанной проблемы один производитель модернизировал конструкцию релейного стабилизатора, добавив в неё симисторы.
Получилась такая гибридная модель, симбиоз релейного и симисторного стабилизатора –
Вольт Гибрид Э 9-1/40А.
В результате реле не искрят при переключении, а симисторным ключам не требуются радиаторы охлаждения, т.к. задействованы они лишь на доли секунд.

Итак, нельзя однозначно утверждать, что релейные ключи менее надёжны, чем тиристорные или симисторные.
Есть релейные стабилизаторы российского производства, которые не уступают в надёжности тиристорным аналогом.
Кстати, стоимость их сравнима. Например, такие модели есть у производителя стабилизаторов Стабвольт и Штиль.

Например, релейные стабилизаторы Стабвольт имеют высокую перегрузочную способность, кратковременно – до 700%.
Это дает возможность работы с импульсной нагрузкой, с нагрузкой в составе которой есть двигатели с большими пусковыми токами.
К такой нагрузке относятся насосы, компрессоры, различные станки и т.п.

Область применения

Характеристики, небольшая стоимость и простота устройства позволяет успешно применять симисторы в промышленности и быту. Их можно найти:

  • В стиральной машине.
  • В печи.
  • В духовках.
  • В электродвигателе.
  • В перфораторах и дрелях.
  • В посудомоечной машине.
  • В регуляторах освещения.
  • В пылесосе.

На этом перечень, где используется этот полупроводниковый прибор, не ограничивается. Применение рассматриваемого проводникового прибора осуществляется практически во всех электроприборах, что только есть в доме. На него возложена функция управления вращением приводного двигателя в стиральных машинках, они используются на плате управления для запуска работы всевозможных устройств – легче сказать, где их нет.

Основные характеристики

Рассматриваемый полупроводниковый прибор предназначен для управления схемами. Независимо от того, где в схеме он применяется, важны следующие характеристики симисторов:

  1. Максимальное напряжение. Показатель, который будучи достигнут на силовых электродах не вызовет, в теории, выхода из строя. Фактически является максимально допустимым значением при условии соблюдения диапазона температур. Будьте осторожны – даже кратковременное превышение может обернуться уничтожением данного элемента цепи.
  2. Максимальный кратковременный импульсный ток в открытом состоянии. Пиковое значение и допустимый для него период, указываемый в миллисекундах.
  3. Рабочий диапазон температур.
  4. Отпирающее напряжение управления (соответствует минимальному постоянному отпирающему току).
  5. Время включения.
  6. Минимальный постоянный ток управления, нужный для включения прибора.
  7. Максимальное повторяющееся импульсное напряжение в закрытом состоянии. Этот параметр всегда указывают в сопроводительной документации. Обозначает критическую величину напряжения, предельную для данного прибора.
  8. Максимальное падение уровня напряжения на симисторе в открытом состоянии. Указывает предельное напряжение, которое может устанавливаться между силовыми электродами в открытом состоянии.
  9. Критическая скорость нарастания тока в открытом состоянии и напряжения в закрытом. Указываются соответственно в амперах и вольтах за секунду. Превышение рекомендованных значений может привести к пробою или ошибочному открытию не к месту. Следует обеспечивать рабочие условия для соблюдения рекомендованных норм и исключить помехи, у которых динамика превышает заданный параметр.
  10. Корпус симистора. Важен для проведения тепловых расчетов и влияет на рассеиваемую мощность.

Вот мы и рассмотрели, что такое симистор, за что он отвечает, где применяется и какими характеристиками обладает. Рассмотренные простым языком теоретические азы позволят заложить основу для будущей результативной деятельности. Надеемся, предоставленная информация была для вас полезной и интересной!

Будет интересно Как работает диод с барьером Шоттки

Симисторный стабилизатор напряжения Энергия Classic 5000

  1. Мощность 5 кВА
  2. Число фаз 1
  3. Наибольший ток 22 А
  4. Тип симисторный
  5. Скорость переключения 20 мс
  6. Входное напряжение 60-265 В
  7. Выходное напряжение 220 В +5%
  8. Подключение колодка с клеммами
  9. Холостой ток 0,3 А
  10. Класс защиты IР 20
  11. Рабочая температура +10 +40 градусов
  12. Габариты 420 х 320 х 180 мм
  13. Вес 16 кг
  14. Гарантийный срок 3 года

Стабилизатор служит для поддержания напряжения стабильной величины 220 вольт, и защиты устройств от перепадов и скачков питания. В основном его сферой использования являются бытовые условия.

Стабилизаторы Энергия Классик относятся к симисторным моделям. Это дает возможность размещать их как в подсобных помещениях, так и в жилых домах. Силовым ключом в них служит тиристор. За счет этого возрастает долговечность и надежность прибора.

Корпус прибора можно фиксировать на стене. В устройстве имеется индикатор с отображением состояния сети питания, а также расхода энергии. Одним из достоинств стабилизатора является способность к перегрузкам. Это позволяет подключать к нему устройства с повышенными токами запуска.

Тиристорный стабилизатор напряжения

Характеризуется отличным быстродействием и высоким КПД, выдерживает большие токи и имеет достаточный запас по кратковременным перегрузкам. Наработка на отказ собственно самих тиристоров значительно превышает срок службы всего стабилизатора напряжения в целом.

Благодаря микропроцессорному управления и отработанным алгоритмам, тиристорный стабилизатор напряжения совершенно не искажает выходное напряжение, т.к. все переключения происходят только при прохождении синусоиды через «ноль». Он отличается низким уровнем собственного энергопотребления вследствие того, что нет никаких дополнительных внутренних потребителей в виде обмоток реле или серводвигателя.

Поэтому тиристорные стабилизаторы напряжения являются самым совершенным классом устройств стабилизации практически без каких либо недостатков и повсеместно применяются и в быту и на производстве. Некоторые производители по-умолчанию проводят их климатическую обработку, чтобы обеспечить работоспособность при низких температурах (-40. -40°С) в неотапливаемых помещениях. При этом стоимость возрастает лишь на несколько процентов, например, универсальный стабилизатор Lider PS10000W-50 на 10 кВА —
49 000 руб.

Тиристорный стабилизатор напряжения

Характеризуется отличным быстродействием и высоким КПД, выдерживает большие токи и имеет достаточный запас по кратковременным перегрузкам. Наработка на отказ собственно самих тиристоров значительно превышает срок службы всего стабилизатора напряжения в целом.

Благодаря микропроцессорному управления и отработанным алгоритмам, тиристорный стабилизатор напряжения совершенно не искажает выходное напряжение, т.к. все переключения происходят только при прохождении синусоиды через «ноль». Он отличается низким уровнем собственного энергопотребления вследствие того, что нет никаких дополнительных внутренних потребителей в виде обмоток реле или серводвигателя.Встречно-параллельное включение тиристоров

Тиристорный стабилизатор напряжения

Поэтому тиристорные стабилизаторы напряжения являются самым совершенным классом устройств стабилизации практически без каких либо недостатков и повсеместно применяются и в быту и на производстве. Некоторые производители по-умолчанию проводят их климатическую обработку, чтобы обеспечить работоспособность при низких температурах (-40. -40°С) в неотапливаемых помещениях. При этом стоимость возрастает лишь на несколько процентов, например, универсальный стабилизатор Lider PS10000W-50 на 10 кВА — 49 000 руб.

Принцип отпирания с помощью управляющего электрода

Эквивалентное представление структуры р-n-p-n в виде двух транзисторов показано на рис. 3.

Представление тиристора в виде двух транзисторов разного типа проводимости приводит к эквивалентной схеме, представленной на рис. 1.4. Она наглядно объясняет явление отпирания тиристора.

Зададим ток IGT через управляющий электрод тиристора, смещенного в прямом направлении (напряжение VAK положительное), как показано на рис. 4.

Так как ток IGT становится базовым током транзистора n-p-n, то ток коллектора этого транзистора равен B1xIGT, где B1 — коэффициент усиления по току транзистора Т1.

Этот ток одновременно является базовым током транзистора р-n-р, что приводит к его отпиранию. Ток коллектора транзистора Т2 составляет величину B1xB2xIGT и суммируется с током IGT, что поддерживает транзистор Т1 в открытом состоянии. Поэтому, если управляющий ток IGT достаточно велик, оба транзистора переходят в режим насыщения.

Цепь внутренней обратной связи сохраняет проводимость тиристора даже в случае исчезновения первоначального тока управляющего электрода IGT, при этом ток анода (1А ) остается достаточно высоким.

Типовая схема запуска тиристора приведена на рис. 5

Рис.3. Разбиение тиристора на два транзистора

Рис.4. Представление тиристора в виде двухтранзисторной схемы

Рис.5. Типичная схема запуска тиристора

Полупроводниковая структура симистора

Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия. Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.

Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.

По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а p—n-переходы j2 и j4 подключаются в прямом, а p—n-переходы j1 и j3 – в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную p—n—p—n структуру с добавочным пятым слоем n0 , который граничит со слоем p1.

Лучшие релейные стабилизаторы напряжения

В настоящее время на рынке стабилизаторов есть достаточно много игроков, больших и не очень фирм производителей, у каждой при этом есть несколько линеек моделей, с разной выходной мощностью и функциями, поэтому назвать какие-то определенные удачные продукты непросто.

Но конечно же, изучая опыт и отзывы своих коллег, поставщиков и клиентов, можно выделить несколько наиболее оптимальных производителей в различных категориях потребительских свойств, на примере моделей на 5 кВт — кВА в частности:

НАЧАЛЬНЫЙ УРОВНЬ

Из самых доступных, недорогих, но при этом достаточно качественных релейных стабилизаторов напряжения советую присмотреться к моделям следующих производителей: Ресанта Quattro Elementi. Особенно удачно эти стабилизаторы применяются на даче, садовом участке или в гараже, а также при питании бытовой техники или электроинструмента.

Стабилизаторы этих производителей нередко ставят в квартирах и коттеджах, котельных и других местах, где важна надежность, как стабилизации, так и защиты электроприборов от негативных влияний некачественных параметров электрического тока.

Недорогой и качественный релейный стабилизатор РЕСАНТА ACH-5000/1-Ц (~ 5400 рублей)

Quattro elementi stabilia 5000 — Еще один доступный релейный стабилизатор с хорошими отзывами (~6000 рублей)

ПОДБРОБНЕЕ..

ЦЕНА / КАЧЕСТВО

По сочетанию цена/качество, с упором на надежность, качество и функции, вроде более широкого диапазона стабилизации, доп.защиты и фильтров, наиболее интересными производителями релейных стабилизаторов, по мнению большого числа потребителей, являются: Энергия и Rucelf следующих моделей:

Одна из самых удачных моделей релейных стабилизаторов, сочетает в себе доступную стоимость и высокую надежность RUCELF СтАР-5000 (6500 рублей)

Энергия ACH 5000 — релейный стабилизатор Российского производства, в компактном, переносном исполнени, 7 ступеней стабилизации. (~7000 рублей)

ПРОДВИНУТЫЕ МОДЕЛИ

Наиболее дорогие и продвинутые релейные стабилизаторы, обладающие максимальным количеством опций, высокой степенью стабилизации и другими характеристиками высокого уровня, которые рассчитаны на установку в более ответственные, требовательные к качеству, надежности и точности параметров напряжения места, например, на производстве, в кафе, магазине и т.д. выпускают производители: Lider, Энергия, Uniel

Энергия Voltron 5000 — профессиональный высококачественный релейный стабилизатор напряжения, с очень хорошими характеристиками и дополнительными функциями. (~9000 рублей)

Uniel-rs-1-5000ls — релейный стабилизатор с широчайшим диапазоном стабилизации, высокой скоростью реагирования, по своим характеристикам сравнивается с … (~12000 рублей)

Считаете, что релейный прибор не то, что вы ищите, обязательно изучите особенности стабилизаторов другого типа и читайте обзоры моделей для разных типовых случаев, всё это и многое другое ждёт вас в ближайших статьях, следите за выходом новых материалов, подписывайтесь на нашу группу ВКонтакте.

Принцип работы электронных стабилизаторов

Принцип работы электронных стабилизаторов этого типа можно сравнить с принципом работы полупроводникового стабилизатора. В основе конструкции лежит использование мощного силового трансформатора. Только роль элементов переключающих его обмотки выполняют не электромагнитные реле, а мощные полупроводниковые ключи, собранные на тиристорах или симисторах.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Поскольку все жилые дома, а также офисы и большинство общественных учреждений питаются по двухпроводной линии, состоящей из одной фазы и нуля, то для питания различных технических устройств используется однофазный тиристорный стабилизатор напряжения. Стабилизатор напряжения состоит из следующих элементов:

  • Входной фильтр напряжения сети;
  • Плата управления и контроля;
  • Трансформатор;
  • Силовые ключи;
  • Устройство индикации.

Очень часто в линиях электропитания переменного тока могут наводиться импульсные высокочастотные помехи, а так же короткие (5-15 мск) выбросы напряжения. Всё это может привести к нарушениям в работе электронной техники, поэтому напряжение на входе стабилизатора проходит через фильтр. Он собран на дросселях, выполненных на ферритовых кольцах и конденсаторах. Такой L/C фильтр препятствует проникновению на вход стабилизатора напряжения сетевых наводок.

Силовой трансформатор имеет секционированную вторичную обмотку, что позволяет менять коэффициент трансформации в ступенчатом режиме, и, следовательно, управлять величиной выходного напряжения. Однофазный симисторный стабилизатор напряжения собран по аналогичной схеме, а вся разница между этими стабилизаторами заключается в типе полупроводниковых ключей.

Плата управления и контроля постоянно анализирует величину напряжения сети и при её отклонении в любую сторону, с помощью электронных ключей переключает секции вторичной обмотки, изменяя тем самым величину напряжения на выходе стабилизатора. Переключающими элементами являются тиристоры или симисторы.

Для удобства пользователей, стабилизаторы напряжения оборудованы светодиодной индикацией режимов работы:

  • «Сеть»;
  • «Нагрузка»;
  • «Перегрузка»;
  • «U вх. min»;
  • «U вх.max».

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Принцип работы, преимущества и недостатки симисторных стабилизаторов

Симисторные стабилизаторы напряжения имеют принцип работы, схожий с тиристорными устройствами.

К их очевидным преимуществам, безусловно, можно отнести перечисленные выше достоинства, которыми отличаются тиристорные устройства:

скорость и точность регулирования напряжения;
высокое значение КПД;
бесшумная работа (что особенно важно при установке в жилых помещениях);
многолетний срок эксплуатации;
надежность работы, обусловленная полным отсутствием механических движущихся частей.

Современные симисторные стабилизаторы напряжения, как и тиристорные аналоги, отличаются широким диапазоном входного напряжения и возможностью работы при достаточно низкой температуре.

Существенными их недостатками являются высокая стоимость в сравнении с релейными моделями и ступенчатое регулирование выходного напряжения.

При покупке симисторного стабилизатора для питания чувствительных к напряжению электроприборов необходимо обратить внимание на количество силовых полупроводниковых ключей, задействованных в схеме стабилизатора – чем их больше, тем на выходе устройство сможет обеспечить более приближенное к номинальному значение напряжения. Кроме того, симисторные стабилизаторы также нельзя назвать удачным решением для организации защиты электродвигателей или нагрузки с электроприводом из-за искажения формы сигнала на выходе: как правило, это модифицированная синусоида

Говоря об ограничениях в использовании, стоит добавить и их низкую стойкость при работе с индуктивной нагрузкой

Кроме того, симисторные стабилизаторы также нельзя назвать удачным решением для организации защиты электродвигателей или нагрузки с электроприводом из-за искажения формы сигнала на выходе: как правило, это модифицированная синусоида. Говоря об ограничениях в использовании, стоит добавить и их низкую стойкость при работе с индуктивной нагрузкой.

К недостаткам симисторных стабилизаторов также следует отнести большую громоздкость силовых ключей по сравнению с тиристорными аналогами: один симистор занимает площадь, достаточную для размещения нескольких тиристоров. Разумеется, это не в лучшую сторону отражается на габаритных размерах и массе устройств.

Говоря об используемых полупроводниковых ключах, добавим, что симисторы менее стойки к токовым перегрузкам и в процессе работы могут нагреваться значительно сильнее, что увеличивает риск их выхода из строя.

Строение устройства

Инверторные стабилизаторы не просто так считаются лучшими в настоящее время. Они отличаются своим принципом работы, который основан на том, что у них другое строение внутренних элементов, обеспечивающих стабильные показатели выходящего напряжения.

Классическая модель стабилизатора такого типа состоит из следующих деталей:

  • входные фильтры, обозначающиеся как ВХ;
  • выпрямитель и корректор коэффициента мощности — ККМ-В;
  • блок конденсаторов ВИП;
  • присутствует элемент, преобразовывающий постоянное напряжение в переменное ИНВ;
  • последняя часть устройства — это микроконтроллер МК.

Здесь стоит отметить, что в данной схеме инверторного преобразователя такие детали, как выпрямитель и преобразователь напряжения, относятся также к инверторному типу, выполненному на базе транзисторов IGBT. Другими словами, в структуру встроены транзисторы биполярного типа с изолированным затвором. Вторая отличительная черта — это наличие металл-оксид-полупроводника типа MOSFET.

Часто спрашивают

Почему для котлов не используют латерные стабилизаторы?

Латерными называют электромеханические устройства с автотрансформаторами, которые запрещено использовать с газовым оборудованием из-за наличия дуги.

На каком расстоянии от котла нужно размещать стабилизатор?

При мощностях потребления нагревателей (как правило, в пределах 500 Вт) можно пренебречь потерями на токоведущих проводниках. Поэтому установить стабилизатор можно практически в любом месте, соответствующем правилам безопасности при эксплуатации электроустановок и газового оборудования.

Нужна ли для котла и стабилизатора трехпроводная сеть с заземлением?

В инструкциях по эксплуатации многих производителей этот вопрос оговорен специально. В этом случае отсутствие контура заземления может стать причиной отказа при гарантийном ремонте.

Можно ли подключить котел через ИБП вместо стабилизатора?

По точности и динамике стабилизации варианты практически аналогичны. Но наличие в ИБП аккумулятора позволит при пропадании напряжения если не эксплуатировать котел, то точно корректно отключить его

Однако стоит обратить внимание на форму выходного напряжения бесперебойника – у некоторых она прямоугольная, что не очень хорошо для котла (насоса)

А нужен ли?

Как понять, нужен ли вам стабилизатор напряжения? Если возьмете мультиметр и измерьте напряжение в сети, в 99% случаев там будут положенные 210-230 В. На первый взгляд, всё отлично, стабилизатор не нужен – я тоже так думал

Напомню, что стабилизатор защищает от резких скачков напряжения, которые случаются в момент включения/выключения мощных потребителей. На производстве качество электроэнергии определяют специальными приборами. Они непрерывно снимают показатели электроэнергии в течение семи суток, чтобы выявить критические скачки напряжения. На основе показаний принимается решение об установке стабилизаторов.

На производстве опасные скачки могут произойти из-за включения крупных промышленных печей, насосов, станков. В городской сети они практически исключены – стиральная машина или перфоратор соседа не просадят напряжение так сильно.

Для защиты квартиры достаточно реле напряжения или нелинейного ограничителя перенапряжения – об этом в отдельной статье. Для квартиры оправдан стабилизатор только для газового котла поквартирного отопления.

В частном секторе стабилизатор обязателен по двум причинам:

  1. Владельцы частных домов имеют привычку использовать опасные для сети сварочники, крупные циркулярки и другие мощные станки.
  2. В коттеджных поселках чаще всего старые сети: частный сектор быстро растет, поэтому потребление электроэнергии пропорционально увеличвается. Старая ТПшка начинает работать без запаса по мощности – отсюда и появляются скачки просадки напряжения.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий