Что такое драйверы для светодиодов и зачем они нужны
Светимость полупроводникового
лед-кристалла напрямую зависит от силы тока, проходящего через него.
Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к
быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется
для него драйвер. В его задачу входит преобразование параметров электрического
тока в следующих направлениях:
- Стабилизация силы в точном значении выходных параметров.
- Задание амплитуды.
- Выпрямление из переменного в постоянный.
Особенности драйвера светодиодов на 220 В
Главная особенность
драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в
том, что он изменяет напряжение и предназначен для работы с электрическим током
подобных характеристик. Поэтому для подключения лампочки не пригодны его
низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме
того, модели последнего типа могут включать в состав понижающий блок –
трансформатор.
При изготовлении
преобразователя своими руками следует знать его основные характеристики:
- Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
- Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
- Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.
Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.
Теория питания светодиодных ламп от 220В
Лэд-лампа, как правило,
представляет собой набор пространственно расположенных в определенной
композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт).
Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80
Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет
для них избыточные параметры.
Поэтому потребуется понизить
амплитуд и силу, а также трансформировать переменный электрический ток в
постоянный. Для этого понадобится драйвер, для изготовления своими руками
которого применяется делитель напряжения на емкостной или резисторной нагрузке,
а также стабилизаторы.
Виды драйверов
Все драйвера различают по трем критериям – по способу стабилизации, конструкционным особенностям и наличию/отсутствию защиты. Рассмотрим все варианты подробнее.
Линейные и импульсные
В зависимости от схемы стабилизации тока драйверы делятся на два типа – линейные и импульсные. Они отличаются принципом работы и эффективностью.
Перед электронной схемой драйвера поставлена задача – обеспечение стабильных значений тока и напряжения, подводимых к кристаллу (светодиоду). Самый простой и дешевый вариант – включение в цепь ограничительного резистора.
Линейная схема питания:
Эта элементарная схема не способна обеспечивать автоматическое поддержание тока. При повышении напряжения он пропорционально растет и, когда превысит допустимое значение, кристалл разрушится от перегрева.
Более сложное управление осуществляется путем включения в цепь транзистора. Минус линейной схемы – снижение мощности при росте напряжения. Такой вариант допустим при работе led-источников малой мощности, но при работе мощных светодиодов такие схемы не применяют.
Плюсы линейной схемы:
- простота;
- дешевизна;
- относительная надежность.
Наряду с линейными схемами, стабилизировать ток и напряжение можно путем импульсной стабилизации:
- после нажатия кнопки заряжается конденсатор;
- после отпускания конденсатор разряжается, отдавая запасённую энергию полупроводниковому элементу (светодиоду), который начинает испускать свет;
- если напряжение растет, то время зарядки конденсатора сокращается, если падает – увеличивается.
Нажимать кнопку пользователю не приходится – за него всё делает электроника. Роль кнопочного механизма в современных источниках питания выполняют полупроводники – тиристоры или транзисторы.
Рассмотренный принцип работы называется в электронике широтно-импульсной модуляцией. За секунду может происходить десятки и даже тысячи срабатываний. КПД такой схемы достигает 95 %.
Упрощенная схема импульсной стабилизации:
Электронные, диммируемые и на базе конденсаторов
От принципа устройства драйвера зависит область его применения и эксплуатационные характеристики.
Виды драйверов по принципу устройства:
- Электронные. В их схемах обязательно используется транзистор. На выходе устанавливается конденсатор, исключающий или хотя бы сглаживающий пульсации тока. Электронные преобразователи способны стабилизировать токи до 750 мА. Драйверы электронного типа борются не только с пульсациями, но и с электромагнитными высокочастотными помехами, наводимыми электроприборами (радио, телевизор, роутер и т. п.). Минимизировать помехи позволяет наличие специального керамического конденсатора. Минус электронного драйвера – высокая стоимость, плюс – КПД близкий к 95 %. Их используют в мощных led-светильниках: автофарах, прожекторах, уличных фонарях.
- Диммируемые. Особенность диммируемых драйверов – возможность управления яркостью светильника. Регулировка основана на изменении тока на выходе, который и определяет яркость светопотока. Драйвер можно включать в схему двумя способами: между светильником и стабилизатором или между источником питания и преобразователем.
- На основе конденсаторов. Это недорогие модели, используемые для бюджетных светодиодных светильников. Если в схеме производитель не предусмотрел сглаживающий конденсатор, то на выходе наблюдается пульсация. Другой минус – недостаточная безопасность. Плюс подобных моделей – высокий КПД, стремящийся к 100 %, и простота схемы. Подобные драйверы легко собрать своими руками.
В корпусе и без него
Драйвер может быть размещен внутри защитного корпуса, но может и не иметь его. Электронные схемы уязвимы перед многими внешними факторами, поэтому более надежным вариантом считается размещение драйвера в корпусе.
Корпус защищает электронный преобразователь от влаги, пыли, попадания прямых солнечных лучей и т. д. Бескорпусные модели обходятся дешевле, но у них меньше срок службы и хуже стабильность эксплуатации. Они больше подходят для скрытого монтажа.
Подключение станции своими руками – алгоритм работ
На насосном оборудовании есть два выхода. Они позволяют произвести ее подключение к водопроводу жилища и непосредственно к точке водозабора (в нашем случае – к скважине). Сначала нужно подсоединить станцию к колодцу. Делается это при помощи 32-миллиметровой пластиковой трубы для водоснабжения. Один из ее концов вы подключаете к насосу, а второй погружаете в скважину. Желательно произвести теплоизоляцию трубного изделия, используя хороший утеплитель. Подойдет продукция под брендом Термофлекс.
Работа станции после подключения
На конец трубы, который погружается в источник водозабора, необходимо смонтировать грубый фильтр очистки. Его функцию выполняет тонкая сетка из металла. Сверху ставьте обратный клапан. Он обеспечит постоянное наполнение водой трубного изделия. Если жидкости в трубе не будет, станция не сможет выкачивать ее из колодца. Металлический фильтр и клапан фиксируйте при помощи муфты, имеющей резьбу наружного типа. Аналогичный крепеж используется и для монтажа второго торца трубы. Схема крепления в данном случае выглядит так: подключаете американку (кран) к выходу насоса, затем ставите муфту и соединяете ее цанговым приспособлением с пластиковым трубным изделием. Все работы выполняются своими руками без малейших затруднений.
https://youtube.com/watch?v=8ZpvOXB7cXc
Следующий шаг – подключение оборудования к водопроводу. Для этих целей на станции (в верхней ее части) имеется специальный вход. К нему сначала подсоединяют (на резьбу) кран-американку, а после этого ввинчивают 32-миллиметровую комбинированную муфту (обычно полипропиленовую). Обязательно следует спаять муфту и трубу. Тогда их соединение будет по-настоящему прочным. Вы подсоединили все элементы насосной станции. Можете запускать ее и наслаждаться бесперебойной подачей воды в ваш дом из скважины!
Особенности конструкции
Как я часто пишу – светодиоды греются. При этом нагрев происходит настолько сильный, что некоторые чипы не могут проработать и минуты без дополнительного теплоотвода. У мелких светодиодов в SMD-корпусах тепло отводится через их контактные площадки.
Мощность одного филамента около 1 ватта. Взгляните на SMD-светодиоды – на каждый ватт их мощности, нужно 25-30кв.см. площади радиатора. Отсюда возникает интересный вопрос, связанный с охлаждением филаментов.
Как охлаждаются филаментные светодиоды?
Во-первых, филамент – это не цельный мощный светодиод, а лишь матрица. Тип матрицы в этом форм-факторе на англоязычных ресурсах называется «COG» или «Chip-on-Glass». На русском языке это что-то вроде «Матрица на стеклянной основе».
Во-вторых, раз уж это матрица, значит на ней есть множество мелких светодиодов. По отдельности они выделяют очень мало тепла, так как они маломощные. Приблизительный расчет:
1 Вт / 28 светодиодов = 0,036 Вт/светодиод
Для отвода тепла нужен носитель. Производители заполняют колбу филаментных ламп хорошо проводящим тепло газом. Одни источники заявляют, что этот газ — гелий, в рекламных видео о лампочках томича говорится о специальной рецептуре газов. Однозначной информации по этому поводу нет.
Благодаря такой конструкции нагрев филаментной лампочки слабый – порядка 50-60 градусов. Вы смело можете использовать их в светильниках с бумажными, тканевыми и пластиковыми абажурами. Нагрев самой нити филамента доходит до температур свыше 100 градусов. Современные светодиоды способны работать и при температурах КРИСТАЛЛА в 120 градусов, а корпус имеет значительно меньший нагрев.
Классическая схема драйвера
Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.
Схема преобразователя на 220 В представлена в качестве импульсного блока питания. При сборке необходимо соблюдать все правила электробезопасности, т. к. здесь нет пределов по токоотдаче
Схема такого механизма составлена из трех основных каскадных областей:
- Разделитель напряжения на емкостном сопротивлении.
- Выпрямитель.
- Стабилизаторы напряжения.
Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.
Номинальное значение резистора может находиться в диапазоне 100 кОм-1 Мом, с мощностью 0,5-1 Вт. Конденсатор должен быть электролитическим, а его эффективное амплитудное значение напряжения – 400-500 В
Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.
Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.
Процесс выпрямления на этом участке выполняется по схеме Гретца. Диодный мост подбирается, отталкиваясь от номинального тока и обратного напряжения. При этом последнее значение не должно быть меньше 600 В
Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.
Так как питание светодиодов не должно превышать 12 В, для схемы необходимо использовать стабилизирующий элемент. Для этого вводится емкостный фильтр. Например, можно применять модель L7812
Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.
Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.
Линейный драйвер для светодиодов своими руками
С теорией закончим, перейдем к практике и попробуем собрать линейный драйвер своими руками. Проще всего эту задачу решить при помощи широко распространенного интегрального стабилизатора КР142ЕН12А (его импортный аналог — LM317). Найти его можно в любом соответствующем магазине, и стоит он в районе 20 рублей. Необходимые материалы и инструменты: паяльник, тестер и провода.
Эта микросхема рассчитана на входное напряжение до 40 В, выдерживает ток до 1.5 А и, главное, имеет встроенную защиту от перегрузки, короткого замыкания и перегрева. Правда, это стабилизатор напряжения, а драйвер должен стабилизировать ток. Но мы этот вопрос решим, чуть изменив типовую схему включения микросхемы.
Универсальный драйвер для светодиодов на интегральном стабилизаторе
Здесь микросхема применяется в роли регулирующего элемента, стабилизирующего ток на заданном уровне. Какой величины этот ток будет? Все зависит от сопротивления резистора R1, номинал которого рассчитывается по простой формуле: R = 1.2/I, где:
- R – сопротивление в омах;
- I – необходимый ток в амперах.
Давай попробуем построить драйвер для тех светодиодов, из которых мы делали настольную лампу в начале статьи. Итак, нам нужен драйвер, на напряжение 9.9 В выдающий стабилизированный ток 300 мА. Делаем расчет номинала резистора R1: 1.2/0.3= 4 Ом. Поскольку резистор стоит в токовой цепи, мощность его выбираем не менее 4 Вт.
Здесь отлично подойдут резисторы, используемые практически во всех телевизорах в качестве гасящих по питанию (такие лежат в любом магазине). Они имеют мощность 2 Вт и сопротивление 1-2 Ом. Если резисторы одноомные, то их понадобится 4 шт, если двухомные – 2 шт. Соединяем их последовательно, чтобы сопротивления сложились.
Крепим микросхему на небольшой радиатор и подключаем к выходу нашего драйвера цепочку из трех последовательно соединенных светодиодов, соблюдая полярность. Можно включать. Но куда? Какое входное напряжение у этого драйвера? Вот тут начинается самое интересное. Напряжение на входе должно быть минимум на 2-3 вольта больше того, что необходимо светодиодам, но не более 40 В – больше микросхема не выдержит.
В нашем конкретном случае светодиодам нужно 9.9 В. Значит, на вход можно подать постоянное напряжение величиной от 12 до 40 В. Причем напряжение это может быть нестабилизированное. Подойдет автомобильный аккумулятор, блок питания ноутбука или ПК, понижающий трансформатор с диодным мостом. Подключаем, соблюдая полярность, и наш фонарь готов!
Мнение экспертаАлексей БартошСпециалист по ремонту, обслуживанию электрооборудования и промышленной электроники.Задать вопрос экспертуА как же с выходным напряжением? Об этом не нужно беспокоиться. Как только драйвер стабилизирует ток на заданном уровне, нужное напряжение на светодиодах установится без нашей помощи. Кто не верит, берет тестер и измеряет.
Вот и закончилась наша беседа о led драйверах. Надеюсь, теперь ты не только знаешь, как работает этот важный узел, но и сможешь его правильно выбрать, подключить, а при необходимости даже собрать своими руками.
Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.
Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.
Выбор драйвера
Выбор драйвера во многом определяет место, где планируется установка светильника.
Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20
Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий. Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети
В этом случае понадобится источник питания с универсальным входом
Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.
Блоки питания и драйверы для светодиодных светильников
Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.
Блок питания PLD-60-1050B для внутреннего светодиодного освещения
Требования к драйверам в зависимости от назначения светильника:
Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.
Герметичный контроллер с драйвером светодиодного светильника
Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.
Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.
От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон
Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью. Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах
Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт
Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.
Как подобрать драйвер для светодиодов. Способы подключения LED
Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:
- Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением.
- Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой.
- Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.
Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки. Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика
Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика
Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.
Виды драйверов.
По типу их можно подразделить на:
Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.
Внутреннее устройство драйвера
Внешний вид и схема драйвера LED 1338G7.
Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.
ШИМ-драйвер Recom.
Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.
Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.
Драйвер с диммером.
LED драйвер на 220 В.
Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:
- блок питания (БП),
- источник тока,
- адаптер питания,
- источник питания.
Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.