Виды солнечных модулей-панелей
Солнечные модули-панели собираются из солнечных элементов, иначе – фотоэлектрических преобразователей. Широкое распространение получили два типа ФЭП.
Они различаются типами кремниевых полупроводников, используемых для их изготовления, это:
- Монокристаллический. Это элементы, полученные путем разрезания искусственно выращенного кристалла кремния на тонкие пластины. Самый производительный и дорогой вариант. Средняя эффективность в районе 17%, можно встретить монокристаллические солнечные элементы с более высокими характеристиками.
- Поликристаллический. Это солнечные элементы, изготовленные из плавленого кремния путем длительного охлаждения. Простота изготовления делает цену доступной, но производительность поликристаллического варианта не превышает 12%.
Поликристаллические солнечные элементы плоской квадратной формы с неоднородной поверхностью. Монокристаллические разновидности выглядят как тонкие однородные поверхностные структуры квадратов со срезанными углами (псевдоквадраты).
Так выглядят фотоэлектрические преобразователи FEP: характеристики солнечного модуля не зависят от типа используемых элементов – это влияет только на размер и цену
Панели первой модели с одинаковой мощностью больше, чем у второй, из-за меньшей эффективности (18% против 22%). Но в среднем десять процентов дешевле и пользуются преимущественным спросом.
Галерея изображенийФото из Пластины из монокристаллического кремния в несколько раз производительнее поликристаллических аналогов, но значительно дороже: на тыльной стороне пластин кремния проложены токопроводящие линии, на лицевой стороне более дешевые пластины поликристаллического кремния, поэтому он более популярен с независимыми мастерами. Сварка элементов производится аналогично: поликристаллические пластины соединяются в модули, в которых должно быть 36 или 72 штуки. Панели собираются из модульных батарей Монокристаллический элемент солнечной батареи Линии передачи отрицательного тока на пластине Поликристаллические элементы для сборки солнечных батарей Боковые стороны поликристаллических солнечных элементов
С правилами и нюансами выбора солнечных батарей для энергоснабжения для автономного отопления вы можете ознакомиться здесь.
Как добиться максимальной эффективности
При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час
В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.
Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.
Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.
Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.
Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.
При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке
Также устройство должно отличаться стойкостью к частой перезарядке.
Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.
Способы использования солнечной энергии
Методы применения энергии небесного светила не относятся к инновационным технологиям, солнечное тепло используют давно и весьма успешно. Однако это касается, в основном, Австралии, некоторых стран Европы, Америки и южных регионов, где альтернативную энергию можно получать в течение всего года.
Некоторые северные области испытывают дефицит естественного излучения, поэтому его применяют в качестве дополнительного или запасного варианта.
Посредниками между солнечными лучами и образующим энергию механизмом являются солнечные батареи или коллекторы, которые отличаются и назначением, и конструкцией.
Батареи аккумулируют энергию солнца и позволяют использовать ее для питания бытовых электрических приборов. Они представляют собой панели с фотоэлементами с одной стороны и фиксирующим механизмом с другой. Можно поэкспериментировать и собрать батарею самостоятельно, но проще купить готовые элементы – выбор достаточно широк.
Гелиосистемы (солнечные коллекторы) являются частью отопительной системы дома. Большие теплоизолированные короба с теплоносителем, как и батареи, крепят на приподнятых щитах, обращенных к солнцу, или скатах крыши.
Считать, что абсолютно все северные регионы получают намного меньше естественного тепла, чем южные, ошибочно. Предположим, на Чукотке или в центральной Канаде солнечных дней намного больше, чем в расположенной южнее Великобритании
Для повышения эффективности панели помещают на динамические механизмы, напоминающие систему слежения – они поворачиваются вслед за движением солнца. Процесс преобразования энергии происходит в трубках, расположенных внутри коробов.
Главное отличие гелиосистем от солнечных батарей в том, что первые нагревают теплоноситель, а вторые аккумулируют электроэнергию. Есть возможность обогревать помещение и с помощью фотоэлементов, но схемы устройства нерациональны и пригодны только для тех для районов, где солнечных дней в году не менее 200.
Схема устройства отопительной системы с солнечным коллектором, подключенным к бойлеру, и запасным источником электроэнергии (например, газовым котлом), работающем на традиционном топливе (+)
Солнечные генераторы лучше, чем обычные портативные генераторы на топливе?
Большинство истинных преимуществ универсальной портативной электростанции на солнечной энергии заключается в том, насколько она удобна и экологична.
Короче говоря, перевешивают ли преимущества недостатки в действительности, зависит от того, для чего будет использоваться генератор, и от климата в этом месте.
Переносные генераторы на солнечной энергии идеально подходят для отдыха на природе, например, для рыбалки и кемпинга. Они не производят никакого шума, поэтому они не могут беспокоить соседей или дикую природу, и они не выделяют никаких опасных паров, поэтому они являются экологически чистыми и безопасными.
Портативные электростанции «все в одном» также являются единственным реальным вариантом в качестве альтернативного источника электропитания для использования внутри помещений, поскольку они не выделяют никаких паров.
Генератор солнечной энергии также является идеальным спутником в путешествиях для профессионалов, работающих в автономных ситуациях.
Генератор солнечной энергии также является распространенным механизмом для поездок по бездорожью. Аккумулятор можно использовать для питания небольших электрических инструментов в случае поломки автомобиля или для запуска автомобиля.
Короче говоря, портативная электростанция на солнечной энергии является универсальным автономным источником электроэнергии, но она не подходит для всех целей.
Небольшие портативные генераторы солнечной энергии не подходят в качестве домашнего резервного генератора просто потому, что они, как правило, содержат гораздо меньше энергии, чем инверторный генератор или обычный портативный генератор. Модели солнечной энергии, которые обеспечивают достаточно электричества для питания основных бытовых приборов, намного больше и тяжелее, чем альтернативы, работающие на топливе, что делает их менее портативным вариантом, в этом случае.
Солнечная энергия также не является надежным источником энергии в регионах с ограниченными солнечными часами или непредсказуемыми погодными условиями. Например, переносная электростанция на солнечной энергии не получит достаточно солнечных часов для полной зарядки в нашей стране зимой.
От чего зависит мощность солнечный батарей
Конструкция гелиобатареи — не единственный фактор, определяющий эксплуатационные показатели комплекса. В процесс вмешиваются внешние факторы, которые уменьшают возможности комплекса. Они воздействуют на работу оборудования поодиночке и сообща, снижая эффективность и уменьшая показатели гелиостанции.
Мощность солнечной батареи — это количество электроэнергии, которое она способна выдать в единицу времени. Это величина конечная, то есть рассчитанная по максимальному значению и имеющая определенный предел. Известно, что солнечная постоянная — 1 кВт на 1 м². Эта величина измерена в определенных условиях, обозначает количество энергии, падающее на земную поверхность в солнечный день при температуре 25° и постоянно вертикальном падении на поверхность. На практике получение полного расчетного объема энергии невозможно.
КПД солнечных панелей ограничен и не превышает 24 %, поэтому максимальной мощностью, полученной от 1 м² принимающей поверхности может быть 0.24 кВт. Это в идеальных условиях и с постоянной коррекцией положения поверхности относительно Солнца. На практике таких условий не бывает. В ситуацию вмешиваются погодные, климатические и сезонные условия. Возможны целые пасмурные недели, длительность светового дня в летний и зимний период существенно отличается.
Кроме этого, температура также влияет на способность солнечных элементов производить энергию — ее выработка значительно падает, как только температура поднимается выше +25°. Это означает, что в ясный летний день, когда мощность солнечных батарей на каждый квадратный метр должна быть максимальной, получить ожидаемый результат не удастся из-за сильного нагрева фотоэлементов. Поэтому, производя расчет солнечной электростанции, надо делать поправки на сезонные условия, длительность дня и прочие природные факторы.
Следующий фактор, который необходимо учесть при выполнении расчета — деградация гелиопанелей. Этот показатель у разных моделей отличается, есть образцы, сохраняющие до 90 % рабочих качеств даже через 20–25 лет эксплуатации. однако, у большинства панелей деградация происходит равномерно и пропорциональна длительности использования.
Кроме этого, расчет количества солнечных панелей необходимо делать с учетом потерь на дополнительном оборудовании — инвертор имеет КПД около 92–96 (и это одна из лучших моделей). Кроме этого, неизбежны потери на АКБ и контроллере, которые достигают 40 % и также снижают общие параметры комплекса. Сами приборы расходуют энергию на питание собственных плат. Поэтому, полный и точный расчет солнечных панелей — задача крайне сложная, требующая экспериментального подтверждения.
Система отопления при помощи солнца
Помощь солнечных батарей снижает нагрузку на сеть отдельного дома. Основные компоненты:
- солнечная батарея;
- контроллеры;
- система водяных насосов;
- бак на тонну.
Отдельная сфера применения – нагревание воды для «тёплого» пола. Солнечный ресурс повышает температуру и создаёт напор. Чтобы сделать правильный расчёт мощности, нужно помнить даже о маленьких приборах, вроде электрического будильника. Нюансы при установке панелей следующие.
- Угол наклона крыши больше чем 32 градуса.
- Располагают панели на южной или юго-западной стороне с максимумом солнца.
- Для попадания солнца на панель в гористой местности направление нужно скорректировать.
- В расчётах мощности учитывайте количество солнечных дней в вашем регионе.
- Нагрузку на стропила нужно учесть на стадии проектирования конструкции крыши, обеспечить доступ для очистки от снега.
Отопление солнечной энергией домов
Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.
Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.
Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.
Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.
Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.
Как работает солнечное отопление
Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.
По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.
Итак, мы выяснили принцип работы солнечных батарей.
Обработка данных и их оптимизация
При расчете солнечных батарей на дом стоит определить, каким образом они будут использоваться – в качестве основного источника питания или же резервного. В случае применения солнечных электростанций в качестве дополнительного питания, информация о почасовых нагрузках и среднесуточном потреблении энергии позволит использовать эти мощности более эффективно. Например, при перебоях с основным электричеством, энергоемкие бытовые приборы будут применяться минимальное количество времени, либо вовсе не будут включаться.
А вот в тех домах, где используется только электроэнергия от солнечных батарей, стоит обратить особое внимание на уровень почасовых нагрузок. При этом желательно применять электроприборы таким образом, чтобы предотвратить скачки энергопотребления в сторону минимальных или максимальных значений
Например, при рациональном распределении нагрузки и эффективном использовании солнечной электроподстанции, можно сократить ежесуточное энергопотребление с 18 до 12 кВт/ч, а потребляемую мощность – с 750 до 500 Вт.
Аналогичным образом производится оптимизация потребления энергии от резервных солнечных батарей. Таким образом, можно будет избежать дополнительных расходов на приобретение аккумуляторов повышенной мощности.
Расчет электрических показателей
Для начала все домашние электроприборы следует занести в таблицу. В ней должно быть 30 граф, а количество строк равно числу приборов. В первую колонку вносят порядковый номер, во вторую — название электрического прибора, в третью — потребляемую мощность. Следующие столбцы, вплоть до 27 — расписанные по часам сутки, начиная с 0 часов и заканчивая 24. Здесь же через дробь в десятичном виде указывают время работы прибора (числитель) и его потребляемая мощность (знаменатель).
Так будет легко подсчитать часовые нагрузки. В колонке под номером 28 записывают суммарное время, на протяжении которого работала техника в течение суток. В следующую колонку вносят потребление электричества конкретным электроприбором.
Определяют его путем умножения времени на индивидуальную мощность, потребляемую прибором. В 30 колонке — примечания и промежуточные подсчеты.
По данной таблице, вы сможете рассчитать общую потребляемую мощность всех приборов для вашего частного дома или дачи
Метод увеличения производительности
Обычно, поэкспериментировав с небольшим количеством солнечных модулей, владельцы частных домов идут дальше и совершенствуют систему различными способами.
Самый простой способ – это увеличение количества задействованных модулей, соответственно, привлечение дополнительных площадей для их размещения и покупка более мощного сопутствующего оборудования
Что делать, если существует дефицит свободной площади? Вот несколько рекомендаций для повышения эффективности солнечной станции (с фотоэлементами или коллекторами):
Изменение ориентации модулей. Перемещение элементов относительно положения солнца. Проще говоря, установка основной части панелей на южной стороне. При длинном световом дне также оптимально задействовать поверхности, выходящие на восток и запад.
Регулировка угла наклона. Производитель обычно указывает, какой угол является наиболее предпочтительным (например, 45º), но порой при монтаже приходится вносить свои коррективы с учетом географической широты.
Правильный выбор места установки. Крыша подходит, потому что чаще всего является наивысшей плоскостью и не затеняется другими объектами (предположим, садовыми деревьями). Но существуют еще более подходящие площади – поворотные устройства слежения за солнцем.
При перпендикулярном расположении элементов к лучам солнца система работает более эффективно, однако на стабильно закрепленной поверхности (например, крыше) это возможно лишь на короткий промежуток времени. Чтобы его увеличить, придумали практичные устройства слежения.
Механизмы слежения – это динамические платформы, которые своей плоскостью поворачиваются вслед за солнцем. Благодаря им производительность генератора увеличивается летом примерно на 35-40%, зимой – на 10-12 %
Большим минусом устройств слежения является их высокая стоимость. В некоторых случаях она не окупается, поэтому нет смысла вкладываться в бесполезные механизмы.
Подсчитано, что 8 панелей – минимальное количество, при котором затраты со временем оправдают себя. Можно задействовать и 3-4 модуля, но при одном условии: если они напрямую, в обход аккумуляторов, подключены к водяному насосу.
Буквально на днях компания Тесла Моторс объявила о создании нового типа крыши – с интегрированными солнечными батареями. Илон Маск заявил, что модифицированная крыша будет дешевле, чем обычная кровля с установленными на нее коллекторами или модулями.
Расчет мощности солнечных батарей
Мощность солнечных панелей для автономных систем выбирается исходя из необходимой вырабатываемой мощности, времени года и географического положения.
Необходимая вырабатываемая мощность определяется мощностью, требуемой потребителям электроэнергии, которые планируется использовать. При расчете стоит учитывать потери на преобразование постоянного напряжения в переменное, заряд-разряд аккумуляторов и потери в проводниках.
Солнечное излучение величина не постоянная и зависит от многих факторов – от времени года, времени суток, погодных условий и географического положения. Эти факторы также должны учитываться при расчете количества необходимой мощности солнечных панелей. Если планируется использование системы круглогодично, то расчет должен производиться с учетом самых неблагоприятных месяцев с точки зрения солнечного излучения.
При расчете для каждого конкретного региона необходимо проанализировать статистические данные о солнечной активности за несколько лет. На основании этих данных, определить усредненную действительную мощность солнечного потока на квадратный метр земной поверхности. Эти данные можно получить у местных или международных метеослужб. Статистические данные позволят с минимальной погрешностью спрогнозировать количество солнечной энергии для вашей системы, которая будет преобразована солнечными панелями в электроэнергию.
Для примера рассмотрим усредненную дневную инсоляцию по месяцам с одного из серверов метеослужб для г. Москвы. Данные указаны с учетом атмосферных явлений и являются усредненными за несколько лет.
Единица измерения инсоляции в таблице кВт*ч/м2/сутки.
Угол наклона плоскости, градусы по отношению к земле (0°- инсоляция на горизонтальную плоскость, 90 – инсоляция на вертикальную плоскость и т. п.), при этом плоскость ориентирована на Юг.
Янв. | Февр. | Март | Апр. | Май | Июнь | Июль | Авг. | Сент. | Окт. | Нояб. | Дек. | Среднегодовая инсоляция кВт*ч/м2/сутки | |
0° | 0.75 | 1.56 | 2.81 | 3.87 | 5.13 | 5.27 | 5.14 | 4.30 | 2.63 | 1.49 | 0.81 | 0.50 | 2.86 |
40° | 1.51 | 2.55 | 3.78 | 4.34 | 5.12 | 4.97 | 5.00 | 4.57 | 3.22 | 2.20 | 1.46 | 1.08 | 3.32 |
55° | 1.66 | 2.70 | 3.82 | 4.16 | 4.70 | 4.51 | 4.53 | 4.31 | 3.17 | 2.27 | 1.58 | 1.20 | 3.22 |
70° | 1.72 | 2.71 | 3.67 | 3.79 | 4.18 | 3.95 | 4.00 | 3.85 | 2.97 | 2.24 | 1.62 | 1.26 | 3.00 |
90° | 1.65 | 2.50 | 3.19 | 3.07 | 3.21 | 2.99 | 3.05 | 3.08 | 2.51 | 2.02 | 1.53 | 1.22 | 2.50 |
Оптимальный угол | 72.0 | 63.0 | 50.0 | 34.0 | 20.0 | 11.0 | 16.0 | 27.0 | 43.0 | 58.0 | 69.0 | 74.0 | 44.6 |
Как видно, самым неблагоприятным месяцем для данного региона является декабрь, дневная усредненная инсоляция на горизонтальную поверхность земли составляет 0,5 кВтч/м2/сутки, на вертикальную – 1,22 кВт*ч/м2/сутки. При угле наклона плоскости относительно земли 70 градусов инсоляция будет составлять 1,26 кВтч/м2/день, оптимальным углом для декабря является 74 градуса. Самым благоприятным месяцем является июнь и инсоляция на горизонтальную поверхность составит 5,27 кВтч/м2/сутки, оптимальный угол наклона для июня 11 градусов.
Угол наклона солнечной панели, при круглогодичном использовании в системе, которая потребляет в среднем одну и ту же мощность независимо от времени года, должен совпадать с оптимальным углом наклона самого неблагоприятного месяца по количеству солнечной радиации. Оптимальным углом наклона для декабря в г. Москва является 74 градус, таким образом и стоит устанавливать солнечную панель, так как в другие месяцы инсоляция заметно больше, и как следствие выработки электроэнергии будет более чем достаточно. Более того, в зимнее время при углах наклона 70-90 градусов, на солнечной панели не будут скапливаться осадки в виде снега. Если задачей является получение максимальной мощности от солнечных панелей, в течение всего года, то требуется постоянно ориентировать солнечную панель максимально перпендикулярно солнцу.
Формула расчета мощности солнечных панелей
Pсп=Eп*k* Pинс / Eинс, где:
Pсп — мощность солнечных панелей, Вт;
Еп — потребляемая энергия, Втч в сутки;
Eинс — среднемесячная инсоляция (из таблицы) кВтч/м2/день;
Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);
k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2-1,4.
Формула расчета вырабатываемой энергии солнечными батареями
Eв=Eинс*Pсп/Pинс*k, где:
Pсп — мощность солнечных панелей, Вт;
Ев — вырабатываемая энергия солнечными панелями, Втч в сутки;
Eинс — среднемесячная инсоляция (из таблицы) кВтч/м2/день;
Pинс – мощность инсоляции на земной поверхности на одном квадратном метре (1000Вт/м2);
k – коэффициент потерь на заряд – разряд аккумуляторов, преобразование постоянного напряжения в переменное, обычно принимают равным 1,2.