Регулятор скорости вращения вентилятора: виды устройства и правила подключения

Популярные схемы, использующие снижение величины напряжения

Главное достоинство таких контроллеров – невысокая стоимость, что позволяет применять их в быту. Недостаток – слабая экономичность. При снижении оборотов уменьшается только шум, потребление электроэнергии фактически не меняется. Еще один недостаток – невозможность подключения мощных устройств, но для бытового использования это не критично.

Варианты схемных решений контроллеров:

  • ступенчатые регуляторы, с применением автотрансформатора;
  • автотрансформаторы с электронным управлением;
  • симисторные или тиристорные контроллеры.

ВНИМАНИЕ! При использовании регулятора скорости, необходимо устанавливать вентилятор с мощностью несколько выше той, на которую рассчитано помещение. Это продлит срок его эксплуатации

Ступенчатое управление с применением автотрансформатора

Принцип работы этого контроллера состоит в следующем. На вход автотрансформатора Т1 подается питающее напряжение 220 В. Обмотка имеет несколько ответвлений от части витков. При подключении нагрузки к ответвлениям, потребитель получает уменьшенное напряжение питания. С помощью переключателя SW1 мотор вентилятора M подключается к нужной части обмотки и скорость его вращения меняется. При понижении питающего напряжения снижается потребление электроэнергии. Сигнал на выходе – чистая синусоида, что благотворно влияет на состояние обмотки двигателя. Недостатком является большой размер блока управления. Ручка регулировки имеет ступенчатую шкалу, как правило, не более пяти положений. Плавно управлять скоростью вращения невозможно.

Автотрансформатор с электронным управлением

Электронный автотрансформатор работает по принципу широтно-импульсной модуляции. Транзисторная схема, модулируя импульсы – плавно изменяет выходное напряжение. Достоинства такого контроллера – компактные размеры и невысокая стоимость. Недостаток –длина кабеля от контроллера до мотора ограничена. Поэтому блок автотрансформатора, как правило, выполнен в отдельном корпусе от ручки управления и располагается в непосредственной близости к вентилятору.

Симисторный (тиристорный) контроллер

Не вдаваясь в подробности принципа фазного управления, по которому работают регуляторы этого типа, вкратце опишем схему. Каждый тиристор «срезает» полуволну переменного тока, уменьшая выходное напряжение. Величина регулируется при помощи блока управления. Достоинства– низкая цена, компактные размеры. Обороты можно регулировать практически от ноля. Недостаток – искрение обмотки двигателя, ограниченная мощность нагрузки.

ВАЖНО!

  1. Двигатель вентилятора должен иметь автоматическую термозащиту.
  2. Недопустимо применять в качестве регулятора скорости вентилятора диммеры для осветительных приборов.

Устройство ПЧ

  • двигатель переменного тока природный контроллер;
  • привод;
  • дополнительные элементы.

Схема контроллера оборотов вращения двигателя 12 в изображена на рисунке. Обороты регулируются с помощью потенциометра. Если на вход поступают импульсы с частотой 8 кГц, то напряжение питания будет 12 вольт.

Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.

Схема регулятора оборотов вращения переменного тока

При пуске трехфазного двигателя на всю мощность, передаётся ток, действие повторяется около 7 раз. Сила тока сгибает обмотки двигателя, образуется тепло, на протяжении долгого времени. Преобразователь представляет собой инвертор, обеспечивающий превращение энергии. Напряжение поступает в регулятор, где происходит выпрямления 220 вольт с помощью диода, расположенного на входе. Затем происходит фильтрация тока посредством 2 конденсатора. Образуется ШИМ. Далее импульсный сигнал передаётся от обмоток двигателя к определённой синусоиде.

Существует универсальный прибор 12в для бесколлекторных двигателей.

Схема состоит из двух частей–логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.

Необходимые для сборки детали:

  • Биполярный транзистор (VT1) — КТ815А.
  • Электролитический конденсатор (С1) — 200 мкФ/16В.
  • Переменный резистор (R1) — Rt/5.
  • Терморезистор (Rt) — 10–30 кОм.
  • Резистор (R2) — 3–5 кОм (1 Вт).

Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).

Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

Видео о сборке регулятора оборотов вентилятора:

Преобразователи на электронных ключах

Распространённые регулятор тиристор, обладающие простой схемой работы.

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

К источнику напряжения 24 вольт. Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Для эффективного режима работы вентилятора, получающего питание от промышленной сети, применяют регулятор скорости вращения. Вентилятор на 220 Вольт, использующий регулировку, может стать практически бесшумными и повысить комфортность обслуживаемого им помещения. Чтоб регулировать обороты, необязательно покупать готовый прибор, даже без специальных знаний его несложно собрать самостоятельно.

Схема регулятора

Известно несколько схемных решений, заложенных в основу работы регуляторов. Это:

  • ступенчатые устройства автотрансформаторного типа;
  • электронные модули ШИМ;
  • контроллеры на полупроводниковых элементах.

Ступенчатое регулирование с использованием автотрансформатора реализуется за счет изменения числа витков, подключаемых к входу вентилятора. Широтно-импульсные методы управления основаны на варьировании мгновенной мощности, передаваемой в нагрузку. Регуляторы на полупроводниках работают по тому же принципу, но в них рабочую функцию выполняют тиристоры или симисторы.

Простейший способ увеличения и уменьшения скорости

Работу регулятора рассмотрим на примере простейшей автотрансформаторной схемы.

Трансформаторный регулятор

Питающая сеть 220 Вольт подключается к катушке автотрансформатора Т1, имеющей несколько ответвлений. При последовательном подсоединении нагрузки к ответвлениям 1, 2 и 3 на обмотку М1 поступает лишь часть сетевого напряжения. Одновременно с его . К достоинствам таких систем относят получение на выходе неискаженной синусоиды, а к недостаткам – невозможность плавного управления.

Правила подключения контроллера

Чтобы подключить регулятор оборотов вентилятора, можно воспользоваться услугами специалистов или попытаться справиться своими силами. Принципиальных особенностей в подключении нет – вполне реально справиться с такой задачей своими силами.

Все добросовестные производители обязательно прилагают инструкцию по использованию и монтажу своей продукции (+)

В зависимости от конструкционных особенностей и типа обслуживаемого оборудования контролеры могут устанавливаться:

  • на стену, как накладная розетка;
  • внутрь стены;
  • внутрь корпуса оборудования;
  • в специальный шкаф, управляющий умными устройствами дома. Это, как правило, клеммная колодка;
  • подсоединяться к компьютеру.

Чтобы собственноручно подключить регулятор, предстоит сначала внимательно ознакомиться с инструкцией, предлагаемой производителем. Такой документ обычно идет в комплекте с прибором и содержит полезные рекомендации как по подключению, так по использованию и обслуживанию.

Настенные и внутристенные модели предстоит крепить шурупами и дюбелями к стене. Комплектующие чаще всего поставляются производителем вместе с основным прибором. Также в инструкции к регулятору можно увидеть схему его подключения. Это значительно облегчит дальнейшие работы по правильной его установке.

Схемы по подключению регуляторов у различных производителей могут отличаться. Поэтому следует внимательно изучить рекомендации перед монтажом

Регулятор скорости подсоединяется к кабелю, питающему вентилятор, согласно схеме производителя. Основная цель – разрезать провод фазы, ноля и земли и подсоединить провода к входному и выходному клеммникам, соблюдая рекомендации. В случае, когда вентилятор имеет свой отдельный выключатель, его предстоит заменить на регулятор, демонтировав первый по ненадобности.

Не стоит забывать, что сечение у питающего и соединительного кабелей должно соответствовать максимальному току напряжения подключаемого прибора.

Важно отыскать на подключаемом приборе входные и выходные отверстия для подведения питающего кабеля соответствующего сечения. В этом поможет схема, прилагаемая производителем. Если предстоит подключать контроллер к ПК или ноутбуку, то сначала предстоит узнать, какая предельно допустимая температура отдельных составляющих техники

В противном случае можно безвозвратно потерять компьютер, у которого перегреются и сгорят важные детали – процессор, материнская плата, графическая карта и прочие

Если предстоит подключать контроллер к ПК или ноутбуку, то сначала предстоит узнать, какая предельно допустимая температура отдельных составляющих техники. В противном случае можно безвозвратно потерять компьютер, у которого перегреются и сгорят важные детали – процессор, материнская плата, графическая карта и прочие.

Модель выбранного реобаса также имеет инструкцию и рекомендации по подключению от изготовителя

Важно придерживаться схем, приведенных на ее страницах при самостоятельной установке прибора

Если есть потребность подключать более 1-го вентилятора, то можно купить многоканальный реобас

Бывают встроенные в корпус регуляторы и устройства, которые покупаются отдельно. Чтобы их подключить правильно, следует придерживаться инструкций.

Например, встроенный контроллер имеет кнопки включения/выключения снаружи системного блока. Провода, идущие от регулятора, соединяются с проводами кулера. В зависимости от модели реобас может контролировать обороты 2, 4 и более вентиляторов параллельно.

Для вентиляторов компьютера и других, используемых в домашних условиях, можно собственноручно изготовить регулятор

Отдельный регулятор для кулера устанавливается в 3,5 или 5,25-дюймовые отсек. Его провода также подключаются к кулерам, а дополнительные датчики, если они идут в комплекте, присоединяются к соответствующим компонентам системного блока, за состоянием которого им предстоит следить.

Принцип работы ступенчатого регулятора

Функционирование прибора базируется на применении трансформатора, который оснащен одной обмоткой, отводами от витков. Обмотка разветвлена. При подключении ответвлений к вытяжке подается пониженное напряжение.

Сама ступенчатая регулировка осуществляется изменением витков, которые подсоединяются к входу вентилятора.


На простейшей схеме видно, что питающая сеть 220 В подсоединена к трансформаторной катушке Т1 с несколькими ветками. При постепенном подключении нагрузки к веткам 1, 2, 3 на М1 подается только часть напряжения

С уменьшением напряжения снижается и скорость вращения лопастей вытяжки. На выходе получаем неискаженную синусоиду, поэтому при переключении скоростей не возникают помехи, влияющие на другие приборы и сам вентилятор.

В других типах регуляторов использован иной принцип. В электронных модулях ШИМ действие основано на варьировании передаваемой в нагрузку мгновенной мощности. В полупроводниковых приборах рабочая функция положена на тиристоры и симисторы.


На панели ступенчатого прибора имеется ручка и шкала обычно с пятью положениями: 0 — выкл., 1 соответствует минимальной скорости, 5 указывает на максимальную, 2, 3, 4 являются промежуточными значениями

Управление устройством осуществляется ступенчатым, поэтапным изменением питающего напряжения. Регулировка производится вручную.

Контроллеры монтируются на стену как выключатели, с их помощью легко менять количество оборотов вытяжного вентилятора.

Специальным переключателем вентилятор подсоединяется к нужному узлу обмотки и скорость вращения его лопастей падает. Параллельно снижается потребление электроэнергии, что экономит ресурс.

К достоинствам моделей относят надежность, долговечность, высокую перегрузочную способность. В число минусов попадают размеры блока управления: это не всегда удобно, если устройство нужно разместить в ограниченном пространстве.

Еще два недостатка — невозможность плавной регулировки и потери энергии на нагрев во время регулировки. Но при подсоединении температурных датчиков, таймера процесс изменения скоростей легко автоматизировать.

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

Как сделать управляемую плату регулятора на 1,2–35 В

Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).

Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Зачем регулировать скорость

Итак, возникает резонный вопрос, для какой цели необходимо осуществить подключение вентилятора к регулятору скорости. Прежде всего стоит упомянуть про реальные возможности и ресурс вентилятора. Если на протяжении всего срока его эксплуатации он будет работать на полной своей мощности, то это приведет к сокращению срока эксплуатации или выхода из строя ряда деталей. Как следствие, наступают поломки.

Совет! Выбирая вентилятор для помещения обязательно учитывайте площадь комнаты, ведь у каждого прибора есть свой максимум. Если установить его в сильно большой комнате, то он будет работать под серьезной нагрузкой. По этой причине выбирайте то устройство, у которого есть запас мощности.

Современная жизнь требует использования большого количества бытовой техники. Так, в них есть различные детали и элементы, которые при работе нагреваются. Чтобы они не перегревались устанавливаются вентиляторы, например, в компьютере или духовом шкафу. И не всегда требуется, чтобы подключенный вентилятор работал на всю свою мощность. Ведь зачастую нагрузка на технику может незначительно увеличиться, а если вентилятор будет работать с одной скоростью, то может произойти перегрев.

Только представьте себе офис или другое помещение, где наблюдается большое скопление бытовой техники. В процессе ее работы может образовываться шум до 50 децибел. А представьте, если все имеющиеся вентиляторы одновременно будут работать на всю свою мощность. Как следствие, регулятор скорости способен снизить весь шум. Более того, это позволит рационально использовать электроэнергию, ведь далеко не во всех случаях требуется полной мощности устройства.

Как видно, существует множество причин, для чего к подключенному агрегату дополнительно устанавливается регулятор скорости. Теперь рассмотрим основные особенности трех типов регуляторов скорости, а потом узнаем, как выполнить подключение своими руками.

Технические характеристики

Регулятором скорости вентилятора называют небольшой прибор, способный снижать или увеличивать обороты вращения рабочего вала. Контроллеры подключаются к вентиляторам по определённой схеме и управляются при помощи ручного метода либо автоматики. Автоматические модели тесно взаимосвязаны с другими устройствами вентиляционной установки, например, с датчиками, определяющими температуру, давление, движение, а также с фотодатчиками и приборами, определяющими влажность. Данные с этих приборов передаются на контроллер, который на их основании выбирает подходящий скоростной режим.

Механические модели управляются вручную. Регулирование скорости вращения осуществляется при помощи колёсика, установленного на корпусе прибора. Нередко контроллеры монтируются в стену по принципу выключателя, что делает их использование удобным, и позволяют в любой момент плавно изменить количество оборотов. Приборы выпускаются в большом диапазоне мощности и способны работать от напряжения как 220, так и 380 В.

Тиристорные

Подключение вентилятора к тиристорному регулятору скорости имеет свои особенности. Само устройство имеет принцип фазового регулирования напряжение. Осуществляется это посредством регулировки напряжения и изменения углов открытия тиристоров. За счет этого на двигатель вентилятора подаются сигналы или полуволны синусоидальной формы с отсеченным начальным полупериодом.

Данный регулятор недопустимо использовать в комбинации с асинхронными электродвигателями, которые устанавливаются практически во всех вытяжных устройствах. Причина в том, что в нем наблюдается значительное искажение формы выходного напряжения. В результате может быть значительная нагрузка на мотор, что может спровоцировать его поломку. Однако, светлые умы человечества придумали, как нивелировать данную нагрузку. Для этого тиристорные регуляторы скорости для вентилятора незначительно модифицируют следующим образом:

  • Задается минимальное напряжение, то есть снижается нагрузка.
  • Устанавливается шумоподавляющий конденсатор, который также снижает уровень помех.
  • Также используется демпферный конденсатор. Он необходимо для той цели, чтобы гасить импульсы напряжения, образующиеся на выходе при коммутации.
  • Так, необходимо достичь того, чтобы максимальный рабочий ток тиристора не превышал ток мотора вентилятора в четыре раза.
  • Что касается номинального тока, то он не должен превышать этот же показатель подключенного вытяжного агрегата на двадцать процентов.

Где же можно использовать такие модифицированные тиристорные регуляторы? Преимущественно в комбинации с однофазными электродвигателями. Но только с теми двигателями, которые имеют термическую защиту. Чтобы произвести контроль или регулировку скорости вентилятора используется регулировочное колесико. Среди положительных сторон этого регулятора скорости можно выделить следующее:

  • Небольшие габариты.
  • Низкая и доступная цена.

Это интересно: Схема подключения реверсивного магнитного пускателя

Почему нельзя регулировать скорость вращения вентилятора диммером

Для регулирования скорости вращения однофазных электродвигателей на напряжение питания 220 В применяются симисторные регуляторы скорости вращения.

Диммер (симисторный светорегулятор), в свою очередь, разработан для управления резистивной нагрузкой и должен применяется только как регулятор яркости свечения ламп.

В паспортах и руководствах по эксплуатации обычно есть указание на недопустимость использования диммера для управления двигателем.

Например, в описании диммера 300W фирмы Eljo (Швеция) указано: индуктивная и емкостная нагрузка (обычные трансформаторы, флуоресцентные лампы и электродвигатели) не могут работать с данными диммерами.

Различия в схемах управления:

В диммерах и симисторных регуляторах скорости применены близкие схемы управления. Обе используют принцип фазового управления, когда изменяется момент включения симистора относительно перехода сетевого напряжения через ноль. Для простоты обычно говорят, что изменяется выходное напряжение.

Схема симисторного регулятора отличается от схемы диммера в следующем:

· Установлен нижний порог напряжения подаваемого на двигатель вентилятора

· Мощность симистора выбирается так, чтобы его максимальный рабочий ток превышал рабочий ток вентилятора не менее, чем в 4 раза. При резистивной нагрузке в 2 А достаточно взять симистор также на 2 А.

· Предохранитель подбирается исходя из мощности электродвигателя. Обычно максимальный ток предохранителя должен быть на 20% больше рабочего тока двигателя.

· Для более правильного формирования синусоиды установлен дополнительный фазосдвигающий демпфирующий конденсатор.

· Для уменьшения сетевых помех используется дополнительный конденсатор помехоподавления

Для чего это необходимо:

1. Вращающий момент асинхронного двигателя падает пропорционально квадрату подаваемого напряжения. При достижении нижнего порога по напряжению двигатель может не запуститься. Для однофазных осевых и канальных вентиляторов нижним значением являются 40-60 В.

Ввиду того, что двигатель не вращаясь, все равно потребляет ток, обмотки вентилятора начинают нагреваться. Двигатель начинает издавать характерный звук (гудеть). В результате, если двигатель не оснащен надежной внутренней термозащитой, перегорает в течение часа.

В симисторных регуляторах, минимальное напряжение, подаваемое на вентилятор, устанавливается на заводе-изготовителе. Обычно это 80-100 В. Это гарантирует нормальную работу вентилятора при низких напряжениях.

2. При запуске двигатель кратковременно потребляет ток, в 6-7 раз больше максимального рабочего (пусковой ток). Для надежной работы при пуске двигателя применяется симистор с большим рабочим током.

3. Для правильной защиты двигателя от перегрузки по току (повышенное напряжение сети, перегрев подшипников и т.п.) величина максимального тока предохранителя должна быть подобрана по типу двигателя. Для симисторных регуляторов это значение на 15-20% выше максимального тока двигателя.

4. При подаче уменьшенного напряжения мощность двигателя падает и ротор начинает проскальзывать относительно поля статора. При определенных оборотах происходит фазовый сдвиг и двигатель начинает кратковременно потреблять ток выше, чем максимальный рабочий. Для недопущения такой ситуации в схему симисторного регулятора устанавливается дополнительный демпфирующий конденсатор и более мощный симистор.

5. Форма синусоиды при фазовом регулировании индуктивной нагрузки более сложна, чем при управлении активной нагрузкой, поэтому необходим дополнительный конденсатор подавляющий высокочастотный спектр помех. Диммер, управляющий вентилятором, может создавать помехи видимые на экране компьютера или телевизора.

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Схема подключения регулятора скорости вентилятора

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора

Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор. При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий