Тепловое реле: принцип работы, виды, схема подключения + регулировка и маркировка

Базовые характеристики токового реле

Основной характеристикой коммутатора тепловой защиты является выраженная зависимость времени срабатывания от протекающего по нему тока — чем больше величина, тем быстрее он сработает. Это свидетельствует об определенной инерционности релейного элемента.

Направленное перемещение частиц-носителей заряда через любой электроприбор, циркуляционный насос и электрокотел, генерирует тепло. При номинальном токе его допустимая длительность стремится к бесконечности.

А при значениях, превышающих номинальные показатели, в оборудовании повышается температура, что приводит к преждевременному износу изоляции.


Обрыв цепи мгновенно блокирует дальнейший рост температурных показателей. Это дает возможность предупредить перегрев двигателя и предотвратить аварийный выход из строя электрической установки

Номинальная нагрузка самого мотора – ключевой фактор, определяющий выбор прибора. Показатель в интервале 1,2-1,3 обозначает успешное срабатывание при токовой перегрузке в 30% на временном отрезке в 1200 секунд.

Продолжительность перегрузки может негативно сказаться на состоянии электрооборудования — при кратковременном воздействии в 5-10 минут нагревается только обмотка мотора, которая имеет небольшую массу. А при длительных нагревается весь двигатель, что чревато серьезными поломками. Или вовсе может потребоваться замена сгоревшего оборудования новым.

Чтобы максимально уберечь объект от перегрузки, следует конкретно под него использовать реле тепловой защиты, время срабатывания которого будет соответствовать максимально допустимым показателям перегрузки конкретного электродвигателя.

На практике собирать реле контроля напряжения под каждый тип мотора нецелесообразно. Один релейный элемент задействуют для защиты двигателей различного конструктивного исполнения. При этом гарантировать надежную защиту в полном рабочем интервале, ограниченном минимальной и максимальной нагрузкой, невозможно.


Повышение показателей тока не сразу приводит к опасному аварийному состоянию оборудования. Прежде чем ротор и статор нагреются до предельной температуры, пройдет некоторое время

Поэтому нет крайней необходимости в том, чтобы защитное устройство реагировало на каждое, даже незначительное повышение тока. Реле должно отключать электродвигатель только в тех случаях, когда есть опасность быстрого износа изоляционного слоя.

Перейдем непосредственно к теме. КАК ПОДОБРАТЬ ТЕПЛОВОЕ РЕЛЕ электродвигателя ИЛИ ПРАВИЛЬНАЯ ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЯ ОТ ПЕРЕГРУЗКИ

Читаем какой номинальный ток двигателя при подключении к сети 380 вольт (Iн).  Этот ток, как мы видим  на шильдике двигателя,  Iн = 1,94 Ампера

Выражение «величина» является условным термином, обозначающим то, какой ток может пропустить через главные рабочие контакты выбранный магнитный пускатель. При присвоении величины считается, что пускатель работает при напряжении 380 В, а его рабочий режим АС-3.

Приведу список различий приборов по их величинам (токи в зависимости от величин):

  • 0 – 6,3 А;
  • 1 – 10 А;
  • 2 – 25 А;
  • 3 – 40 А;
  • 4 – 63 А;
  • 5 – 100 А;
  • 6 – 160 А;
  • 7 – 250 А.

Величины их допустимых токов, протекающих по контактам главной цепи, различаются от тех, что я привел вот по каким принципам:

  • категория использования (она может быть АС-1 -, АС3, АС-4 и еще 8 категорий);
  • первая подразумевает чисто активную нагрузку (или с малым присутствием индуктивности);
  • вторая – для управления моторами, имеющими контактные кольца;
  • третья – работу в режиме прямого запуска движков с ротором короткозамкнутого типа и подключение оных;
  • четвертая — старт моторов, имеющих короткозамкнутый ротор, обесточивание движков, вертящихся медленно, либо недвижимых, торможение методом противотока.

Если увеличивать номер категории использования, то максимальный контактный ток главной цепи (при идентичности параметров коммутационной износостойкости) будет снижаться.

Вернемся к нашим баранам.

Тепловое Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует  значению тока уставки (тока несрабатывания реле). Срабатывания реле происходит в пределах 5-20% от превышения тока уставки  потребляемым током электродвигателя. Т.е.

, при перегрузке электродвигателя на 5-20% (1,05*Iн — 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой.

Поэтому выбираем реле таким образом, чтобы ток несрабатывания теплового реле был на 5-10% выше от номинального тока защищаемого электродвигателя (см. таблицу ниже).

Таблица для подбора тепловых реле

0,37РТЛ-10050,6…1РТ 13050,6…1
0,55РТЛ-10060,95…1,6РТ 13061…1,6
0,75РТЛ-10071,5…2,6РТ 13071,6…2,5
1,5РТЛ-10082,4…4РТ 13082,5…4
2,2РТЛ-10103,8…6РТ 13104…6
3РТЛ-10125,5…8РТ 13125,5…8
4РТЛ-10147…10РТ 13147…10
5,5РТЛ-10169,5…14РТ 13169…13
7,5РТЛ-102113…19РТ 132112…18
11РТЛ-102218…25РТ 132217…25
15РТЛ-205323…32РТ 235323…32
18,5РТЛ-205530…41РТ 235528…36
22РТЛ-205738…52РТ 335737…50
25РТЛ-205947…64
30РТЛ-206154…74

Для большинства электродвигателей, произведенных в Китае, мы предлагаем подбирать ток несрабатывания теплового реле равным номинальному.  Подобрав тепловое реле и соответствующий ему магнитный пускатель, настраиваем тепловое реле на нужный нам ток срабатывания.

Если двигатель трехфазный – то умножаем рабочий ток на 1,25- 1,5 – это  и будет уставка теплового реле. 

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов

Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В660
Частота переменного тока, Гц50 (60)
Время срабатывания при токе 1,2 Iном, мин20
Время ручного возврата, мин, не менее1,5
Время срабатывания при нагрузке 6-кратным Iном, сРТЛ-10004,5 … 9,0
РТЛ-20004,5 … 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток:до 10А0,5
свыше 10А1,0
Тип релеДиапазон регулирова-ния номинального тока несрабатывания, АМощность, потребляемая одним полюсом реле, ВтТип релеДиапазон регулирова-ния номинального тока несрабатывания, АМощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-10010,10 … 0,172,05РТЛ-10082,40 … 4,001,87
РТЛ-10020,16 … 0,262,03РТЛ-10103,80 … 6,001,84
РТЛ-10030,24 … 0,401,97РТЛ-10125,50 … 8,001,68
РТЛ-10040,38 … 0,651,99РТЛ-10147,00 … 10,01,75
РТЛ-10050,61 … 1,001,8РТЛ-10169,50 … 14,02,5
РТЛ-10060,95 … 1,61,8РТЛ-102113,0 … 19,02,75
РТЛ-10071,50 … 2,601,8РТЛ-102218,0 … 25,02,8
Номинальный ток 80А
РТЛ-205323 … 322,43РТЛ-205947 … 643,69
РТЛ-205530 … 413,03РТЛ-206154 … 744,38
РТЛ-205738 … 523,3РТЛ-206363 … 865,62

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем. Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН. Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2. Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт.

Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ. На реле РТИ эти контакты размещены на передней панели:

  • NO – нормально-открытый – на индикацию;
  • NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Устройство автоматического выключателя

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн – номинальный ток нагрузки электродвигателя, Iнэ – номинальный ток нагревательного элемента теплового реле, с – коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

N2 = (T – 30)/10

где Т – температура окружающей среды, °С.

Шаг третий:

N = N1 + N2

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Устройство и принцип действия теплового реле

Март 17th, 2016 admin

Тепловое реле – это аппарат защиты, отключающий электродвигатели при длительных перегрузках, а также при обрыве одной из фаз от сети. Тепловое реле, как правило, устанавливается после магнитного пускателя, для того, чтобы обесточить электродвигатель, отключая питание с катушки магнитного пускателя своим размыкающим контактом в цепях управления.

Чаще всего на предприятиях используются тепловые реле серии ТРЛ, РТЛ, РТТ и другие. В этой статье рассмотрим устройство и принцип действия реле РТТ-111 УХЛ 4, которое используется с магнитными пускателями серии ПМЕ.

Технические характеристики теплового реле РТТ-111 УХЛ4

-номинальный ток теплового расцепителя – 10 А;

-напряжение силовой цепи – 220 В, 400 В, 660 В;

-один нормально замкнутый контакт 95-96;

-уставка тока срабатывания от 5,35 А до 7,35 А.

Устройство и принцип действия теплового реле

Тепловые реле устроены аналогично друг другу и состоят из следующих основных деталей. Главным чувствительным элементом является биметаллическая пластина, состоящая из двух металлов: сплавов железа с никелем и латуни, соединенных пайкой и имеющих разные по величине коэффициенты линейного теплового расширения. Этот коэффициент характеризует то, насколько может удлиняться, в данном случае, металлическая пластина при ее нагревании. Для сравнения, коэффициент линейного теплового расширения латуни составляет 18,7 () по сравнению с сплавом железа и никеля 1,5 (), поэтому при нагреве латунь будет быстрее увеличиваться в длине, изгибая, тем самым, биметаллическую пластину в свою сторону. Это свойство и используется в тепловом реле!

1-корпус теплового реле;

2-биметаллическая пластина с нагревательным элементом;

5-пружина замыкающего контакта;

6-винт регулировки пластины температурного компенсатора;

7- пластина температурного компенсатора;

9-эксцентрик с движком уставки тока срабатывания;

10- кнопка возврата реле в рабочее состояние.

По закону Джоуля-Ленца электрический ток, протекающий по проводнику вызывает его нагрев, то есть часть электрической энергии уходит на тепловые потери. И чем больше по значению сила тока в проводника одного и того же поперечного сечения, тем больше он нагревается (перегрузка). Но в тепловых реле биметаллическая пластина нагревается непосредственно от нагревательного элемента-проводника, по которому протекает электрический ток к электродвигателю. Нагретая и изогнутая биметаллическая пластина воздействует через толкатель на исполнительную пластину температурного компенсатора, которая, в свою очередь, выводит из зацепления замкнутые контакты в цепи катушки магнитного пускателя и кнопку включения реле в рабочее состояние(наиболее наглядно изображено на этом рисунке).

Так как на работу теплового реле влияет температура окружающей среды (дополнительный нагрев), то в качестве «противовеса» используется также биметаллическая пластина температурного компенсатора, которая изгибается в противоположную сторону и регулируется специальным винтом.

На эксцентрике или регуляторе тока срабатывания есть шкала с 5 делениями влево(уменьшение тока) и с 5 делениями вправо (увеличение тока) от начальной риски. Ток срабатывания регулируется путем изменения зазора между толкателем и исполнительной пластиной с помощью воздействия движка эксцентрика на пластину температурного компенсатора.

При обрыве питания одной из фаз трехфазного электродвигателя нагрузка переходит на две другие фазы, что приводит к возрастанию в них электрического тока, нагреву обмоток и срабатыванию, в итоге, теплового реле- защита от неполнофазного режима!

Рекомендации:

-при срабатывании теплового реле, необходимо дать время для остывания тепловому расцепителю и обязательно найти причину его срабатывания (произвести тщательный осмотр электродигателя);

— в зависимости от температурных условий эксплуатации электродвигателей советую регулировать эксцентрик влево или вправо;

-периодически производить технический осмотр и ремонт теплового реле во избежание преждевременного выхода из строя!

Спасибо за внимание!

Конструкция и принцип работы прибора

Надежность работы энергетических установок напрямую зависит от различных перегрузок, которым данное устройство подвергается в период эксплуатации. Для каждого устройства существуют предельные величины тока и их длительность, при которых оборудование функционирует в нормальном и безопасном режиме. При номинальных значениях тока длительность работы электродвигателя или любой другой электроустановки ограничена только механической прочностью вращающихся деталей. При длительном превышении этого значения возникает аварийная ситуация.

Для обеспечения защиты электрических двигателей и другого оборудования от перегрузок широко используются устройства с биметаллическими элементами. Эти приборы работают в соответствии с законом физики, описанным учеными Джоулем и Ленце в 19 веке и определяющим зависимость выделенного тепла от силы тока на конкретном участке электрической цепи. Именно это закон является определяющим в работе электротеплового реле (расцепителя). В составе конструкции прибора имеется спираль, которая является излучателем тепла. Непосредственно рядом с ней монтируется биметаллическая пластина, реагирующая на излучаемое тепло.

Термопластины изготовлены из двух металлических сплавов с различной теплопроводностью, которые при нагреве/охлаждении меняют свою геометрию. Это свойство биметаллических элементов заложено в принцип функционирования теплового расцепителя. При любом увеличении или уменьшении тока нагрузки, рабочие пластины меняют свое пространственное расположение и механически воздействуют на толкатель, который размыкает или замыкает контактные группы термореле, подключенные к обмоткам магнитного пускателя (МП). Пускатель двигателя срабатывает и отключает нагрузку от электрической сети. Стандартная конструкция электротеплового реле представлена на следующей картинке.

На работу тепловых расцепителей с биметаллическими пластинами оказывает воздействие температура окружающего воздуха, дополнительно нагревая рабочие элементы конструкции прибора. Для исключения этого явления все устройства этого типа снабжены дополнительными компенсирующими биметаллическими пластинами, изгибающимися в противоположную сторону относительно основных элементов.

Компенсатор является регулятором тока срабатывания устройства. Для регулировки используется эксцентрик со шкалой, разделенной на две части. При повороте влево ручки компенсатора значение тока срабатывания уменьшается, а при смещении вправо соответственно увеличивается. Регулировка значений тока срабатывания расцепителя происходит путем увеличения/уменьшения зазора между толкателем и основной пластиной, за счет воздействия эксцентрика на дополнительную биметаллическую пластину.

Устройство и принцип работы

Термореле (ТР) предназначено для обеспечения защиты электродвигателей от перегрева и преждевременного выхода из строя. При долговременном запуске электродвигатель подвержен токовым перегрузкам, т.к. во время пуска происходит потребление семикратного значения тока, приводящего к нагреву обмоток. Номинальный ток (Iн) — сила тока, потребляемая двигателем при работе. Кроме того, ТР увеличивают срок эксплуатации электрооборудования.

Тепловое реле, устройство которого составляют простейшие элементы:

  1. Термочувствительный элемент.
  2. Контакт с самовозвратом.
  3. Контакты.
  4. Пружина.
  5. Биметаллический проводник в виде пластины.
  6. Кнопка.
  7. Регулятор тока уставки.

Термочувствительный элемент является датчиком температуры, служащий для передачи тепла на биметаллическую пластину или другой элемент тепловой защиты. Контакт с самовозвратом позволяет при нагреве мгновенно разомкнуть цепь питания электрического потребителя для избежания его перегрева.

Пластина состоит из двух видов металла (биметалл), причем один из них обладает высоким температурным коэффициентом расширения (Kр). Они скреплены между собой при помощи сварки или проката при высоких значениях температуры. При нагреве изгибается пластина тепловой защиты в сторону материала с меньшим Kр, а после остывания пластина принимает исходное положение. В основном пластины изготавливаются из инвара (меньшее значение Kр) и немагнитной или хромоникелевой стали (больший Kр).

Кнопка включает ТР, регулятор тока уставки необходим для установки оптимального значения I для потребителя, причем его превышение приведет к срабатыванию ТР.

Принцип действия ТР основан на законе Джоуля-Ленца. Ток представляет собой направленное движение заряженных частиц, которые сталкиваются с атомами кристаллической решетки проводника (эта величина является сопротивление и обозначается R). Это взаимодействие вызывает появление тепловой энергии, получаемой из электрической. Зависимость длительности протекания от температуры проводника определяется по закону Джоуля-Ленца.

Формулировка этого закона следующая: при прохождении I по проводнику количество теплоты Q, выделяемой током, при взаимодействии с атомами кристаллической решетки проводника прямо пропорционально квадрату I, величине R проводника и времени воздействия тока на проводник. Математически можно записать следующим образом: Q = a * I * I * R * t, где a — коэффициент преобразования, I — ток, протекающий через искомый проводник, R — величина сопротивления и t — время протекания I.

При коэффициенте a = 1 результат расчета измеряется в джоулях, а при условии, что a = 0.24, результат измеряется в калориях.

Нагрев биметаллического материала происходит двумя способами. При первом случае I проходит через биметалл, а во втором — через обмотку. Изоляция обмотки замедляет поток тепловой энергии. Термореле нагревается сильнее при высоких значениях I, чем при контакте с термочувствительным элементом. Происходит задержка сигнала срабатывания контактов. В современных моделях ТР используются оба принципа.

Нагрев биметаллической пластины теплового устройства защиты производится при подключенной нагрузке. Комбинированный нагрев позволяет получить устройство с оптимальными характеристиками. Пластина нагревается при помощи тепла, выделяемого I при прохождении через нее, и специальным нагревателем при I нагрузки. Во время нагрева биметаллическая пластина деформируется и воздействует на контакт с самовозвратом.

Watch this video on YouTube

Принцип работы

В основу работы положен принцип разности температурного расширения различных металлов, описанных законом Джоуля-Ленца. При нагревании биметаллической пластины, состоящей из двух металлов с различным коэффициентом теплового расширения, произойдет ее геометрическая деформация. Именно такая пластина и устанавливается в термореле, она реагирует на превышение температуры более установленного предела.

Для рассмотрения принципа работы температурного реле воспользуемся трехмерной моделью реального устройства, приведенной на рисунке 2 ниже:


Рис. 2. Принцип действия температурного реле

Как видите, подключенное в цепь электродвигателя тепловое реле пропускает основную нагрузку электрической машины через токоведущие шины. Если смоделировать ситуацию перегрузки, когда через них потечет ток в несколько раз превышающий номинальный, то шины начнут нагреваться и избыток тепла перейдет на биметаллическую пластину, подключенную к каждой из фаз электродвигателя. При достижении температуры уставки биметаллическая пластина изогнется и приведет в движение один из толкателей. Толкатель, в свою очередь, сместит рычаг защелки на несколько миллиметров, что отпустит пружинный механизм и даст ход штанге расцепителя.

Принцип работы

Во время перегрузки реле тепловое типа РТТ 211, 111, 5, 321, и РТТ 141 включает защиту при помощи тепловых чувствительных элементов или магнитного пускателя пмл (пм-1-12). Эти датчики способны реагировать на состояние текущего защищенного компонента в процессе его эксплуатации.

Схема: тепловое реле ТРТ

Протекание тока через электрическое устройство генерирует тепло. Увеличение тока приводит к пропорциональному увеличению количества тепла. Протекание тока через электрический прибор является продуктом нагрузки, которой подвергается определенный аппарат. Если нагрузка возрастает до точки, которая превышает расчетные характеристики прибора, он будет перегреваться и, в конечном счете, поломается.

Принцип работы теплового реле

Тепловые реле предназначены для предотвращения повреждения или разрушения электрических машин, и срабатывает, реагируя на увеличение тока, индуцированного температурами. При повышении температуры выше нормы, реле отключит основной источник питания и предотвратит повреждение оборудования. Это отклонение достигается либо через механическую блокировку между реле и основным источником питания, либо через электрическую. Чувствительным элементом в обоих случаях выступает би-металлическая полоса.

Видео: тепловое реле

https://youtube.com/watch?v=AE1uR9qTrzY

Би-металлическая полоса в тепловом реле состоит из двух разнородных металлов слитых вместе. Различные характеристики металла означают, что они нагреваются с разной скоростью, в результате чего полоса сгибается. Этот изгиб активирует отключение при перегреве. Электронное тепловое реле перегрузки использует датчик или зонд, чтобы «прочитать» ток, генерируемый температуры. Затем микропроцессор предписывает, когда схема будет открывать и перерезать основные поставки в зависимости от заданных параметров.

Биметаллические полосы могут быть нагреты непосредственно или косвенно. В первом случае ток проходит непосредственно через биметалл, во втором через изолированный слой обмотки вокруг полосы. Изоляция вызывает некоторое замедление потока тепла, инерция косвенно нагревает термореле сильнее при более высоких токах, чем при их непосредственном контакте, и пускатель пма задерживает сигнал. Часто оба этих принципа объединены.

Реле тепловое (РТ) электродвигателя и компрессора работает на принципе изменения температур. Из-за этого нужно очень внимательно следить за тем, чтобы температура в помещении, где находится прибор, не поднималась выше 30 градусов.

Схема подключения теплового реле

Чаще всего, подключение теплового реле осуществляется непосредственно к магнитному пускателю. Силовые контакты устройства позволяют выполнить его монтаж на МП без проводов. Также существуют модели тепловой защиты, которые можно установить как самостоятельный модуль на монтажную панель или DIN-рейку в электрический шкаф. На следующем рисунке представлена структурная схема подключения теплового реле в соответствии с действующим ГОСТом.

На следующем рисунке приведена схема управления электродвигателем, отключающим его от сети в случае возникновения аварийной ситуации: перегрузке по току или обрыву провода одной из фаз.

Для непосвященного человека все эти принципиальные схемы не значат ровно ничего, поэтому на следующей картинке будет представлена более доступная для понимания простым потребителем схема подключения электротеплового реле с фотографиями всех элементов, входящих в систему защиты электрических моторов от токовых перегрузок.

Коротко рассмотрим, как действует данная компоновка защиты электродвигателей. Входной автомат обеспечивает подачу одной фазы через нормально-замкнутую аварийную кнопку «Стоп» на разомкнутую кнопку «Пуск». При ее включении, напряжение питания попадается на обмотку магнитного пускателя, который последовательно включает электромотор. Все фазы питающей электросети, поступающие на электрический двигатель, проходят через обмотки реле с биметаллическими элементами. В случае увеличения тока нагрузки до максимальных значений срабатывает тепловая защита и силовая установка обесточивается.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий