Критерии выбора
Устройства выбирают по назначению:
- Для розеток и электроприборов — на 10 и 30 мА.
- Для осветительных сетей деревянных домов — противопожарные (100, 300 и 500 мА).
Подбирая УЗО по чувствительности, следует иметь в виду естественные утечки тока. В сети они составляют (мА):
- Iут=0,01*L, где L — суммарная длина проводов, м;
- в электроприемнике — Iут=0,4*L.
Если естественная утечка составляет 150 мА, то аппарат на 100 (мА) или меньше часто будет срабатывать ложно. Крупные сети разбивают на группы.
Класс устройства по роду тока утечки выбирают в соответствии с видом электроприемников. Нерационально устанавливать на всех линиях аппараты типа А, поскольку они намного дороже АС.
Устройства выбирают по чувствительности.
Наиболее надежны электромеханические УЗО. Схема усиления в электронных аналогах нуждается в питании. При обрыве нейтрали выше устройства она обесточивается, и УЗО становится неработоспособным. При этом токоведущие части остаются под напряжением, а значит, сохраняется риск удара током и возгорания.
Электронные модели рекомендуют приобретать только в крайнем случае, если в щите мало свободного места. Например, на ДИН-рейке уже установлены реле напряжения и контактор системы «умный дом».
По номинальному току аппарат должен на ступень превосходить защищающий его автоматический выключатель. Тот размыкает цепь мгновенно только при коротком замыкании, а при меньших перегрузках время срабатывания может достигать 60 минут. Весь этот период через УЗО будет протекать ток выше номинального, что приведет к поломке.
Схемы для 3-фазной сети
В домах, производственных помещениях и прочих сооружениях может встречаться иной вариант обустройства электроснабжения.
Так, для квартир подключение 3-фазной сети нехарактерно, зато для оснащения частного дома такой вариант не редкость. Здесь будут использоваться иные схемы подключения аппарата защиты.
Вариант #1 – общее УЗО для 3-фазной сети + групповые УЗО.
Для сети 380 В 2-полюсного прибора мало, необходим 4-полюсный аналог: нужно подключить 1 нулевую жилу и 3 фазных.
Схема усложнена оборудованием каждой электролинии отдельным прибором УЗО. Это необязательно, однако дублированную защиту рекомендуется делать для дополнительного предохранения от токов утечки
Важен вид проводов. Для 1-фазной сети подходит стандартный кабель ВВГ, тогда как для 3-фазной рекомендуется протягивать более стойкий к возгоранию ВВГнг.
Вариант #2 – общее УЗО для 3-фазной сети + счетчик.
Это решение полностью повторяет предыдущее, но в схему добавлен счетчик электроэнергии. Групповые УЗО также включены в систему обслуживания отдельных линий.
Из всех представленных схем эта самая объемная в буквальном смысле, то есть требует установки большого электрощита с множеством проводов и подключенных электроприборов
Существует нюанс, который относится к любой из представленных схем. Если в квартире или доме несколько осветительных и розеточных контуров, несколько мощных бытовых приборов, требующих обустройства отдельных электролиний, то есть смысл устанавливать двойную защиту с общим УЗО.
В обратном случае достаточно либо общего аппарата, или по одному на каждый контур.
Подключение вводного УЗО в сети 380 В
Трехфазное четырехполюсное УЗО подключается с соблюдением тех же общих правил, что и однофазное. В данном примере использованы устройства марки Legrand. Клеммы нуля у них находятся справа.
Для питания трехфазной плиты установлено отдельное четырехполюсное УЗО с током утечки 30мА. Ванная и розетки подключены на 3 фазы с применением дифференциальных автоматов. Ноль кабеля освещения подключается к выходу противопожарного прибора защиты.
Вышеприведенная иллюстрация демонстрирует подключение трехфазного УЗО в случае применения асинхронного двигателя в сети 380 В. В данном варианте отсутствует нулевой провод соединяющий устройство защиты и нагрузку. Корпус электродвигателя необходимо подсоединить к шине заземления.
Подключение УЗО к однофазной сети без заземления
Устройство защитного отключения можно подключить в электрическую сеть, даже если заземление полностью отсутствует. Довольно часто такая ситуация встречается в зданиях старой постройки, где однофазные линии проложены силовыми кабелями, имеющими только одну фазу и ноль. Третий провод под заземление не был предусмотрен изначально.
Для решения вопроса, как подключить УЗО без заземления, схема требует полной замены проводки и устройства заземляющего контура по периметру здания. Однако большинство людей не в состоянии выполнить такие объемы работ, в первую очередь из-за их высокой стоимости. Поэтому установка УЗО выполняется без защитного заземления. В приборе предусмотрены клеммы для подключения только фазного и нулевого проводов, отдельная точка для заземления отсутствует.
Таким образом, схема подключения УЗО без заземления предполагает отключение электроэнергии, поступающей в сеть, когда во входящем и выходящем токе изменяются потенциалы. Вместе с устройством защитного отключения рекомендуется установка автоматического выключателя. Таким образом, гарантируется защита от короткого замыкания в случае повреждения кабеля. Бытовая техника не перегорает во время скачков напряжения в сети. Один аппарат УЗО не в состоянии справиться со всеми задачами, он способен лишь предотвратить утечку переменного тока.
Согласно ПУЭ, схема подключение УЗО без заземления запрещает применение устройств, реагирующих на дифференциальный ток в четырехпроводных трехфазных цепях, когда объединяется заземление и рабочий ноль. При подключении защитного устройства сразу ко всей электрической сети, ее схема значительно упрощается. В качестве исходных данных потребуются параметры имеющегося силового кабеля и суммарная сила тока при одновременном подключении всех бытовых приборов.
Подключение УЗО в частном доме без заземления выполняется в виде последовательной схемы. В случае каких-либо изменений, предусматривающих добавление новых потребителей, последовательность подключения каждого элемента должна сохраняться. Как правило, они просто подключаются на определенном участке цепи. Однофазная электрическая сеть, при отсутствии заземляющего провода, предусматривает размещение УЗО перед счетчиком электроэнергии и до распределительного щита. Далее подключаются автоматы совместно с выравнивателем напряжения. Подобная схема позволяет контролировать состояние проводки во всем доме, а не только ее отдельных линий.
В некоторых случаях установка УЗО на даче без заземления в однофазной сети предусматривает установку отдельных автоматов на линии с оборудованием повышенной мощности. Это дает возможность не отключать напряжение во всем доме при высоком напряжении.
Виды и типы дифференциальных выключателей (ВД)
По основным рабочим характеристикам выключатели дифференциальные (ВД) классифицируются на отдельные виды и типы. Так по способу управления УДТ бывают двух видов:
- с источником питания (электронные).
- без дополнительного источника питания (электромеханические).
Определить способ управления ВД можно по схеме, изображенной на его корпусе.
Схемы электромеханического и электронного ВД
Выбирая УДТ, следует учитывать, что среди электронных устройств первого вида есть модели, которые автоматически отключаются, если вспомогательный источник питания отказал. А есть также модификации, которые не отключаются. Они в опасных ситуациях не способны выполнять функцию защиты при отказе источника питания. Поэтому менее надежны.
По числу полюсов и напряжению питания классификация следующая:
- двухполюсные – рассчитаны на рабочее напряжение 230 В;
- четырехполюсные – используются в сетях 400 В.
Относительно возможности установки тока срабатывания УДТ бывают:
- регулируемые (дискретно или плавно);
- нерегулируемые.
По способу монтажа ВД делятся на такие разновидности:
- стационарные, предназначенные для установки в электрический щит;
- переносные, к которым относятся УЗО-розетки и вилки.
Что касается стойкости к действию импульсного напряжения, то в этом направлении выделяют следующие виды УДТ:
- стойкие;
- отключающиеся.
Классификация устройств по срабатыванию в зависимости от формы колебаний рабочего тока представлена далее в таблице. На корпусе тип тока нагрузки, на который рассчитан ВД, обозначается графически или буквами.
Тип УЗО | Характеристика |
AC | Срабатывают при медленном возрастании и при скачке дифференциального переменного синусоидального тока. УЗО данного типа получили широкое распространение в быту |
A | Предназначены для цепей с пульсирующим постоянным и синусоидальным переменным типом тока. Срабатывают от медленного и резкого нарастания тока. Подходят для домашнего и промышленного (например, в цепи регулировки скорости электродвигателя) использования. |
B | Используются в промышленных сетях. Рассчитаны на срабатывание от тока с разной формой колебаний переменного и постоянного типа, как по отдельности, так и наложенных друг на друга (одновременно протекают). |
F | Соединяет отключение по типу «А» со срабатыванием от дифференциального постоянного пульсирующего (наложен на постоянный сглаженный) и составного тока (проходит между нейтральной жилой и фазой либо землей и фазами). |
Маркировка по типу тока
Следует учитывать, что УДТ выпускаются с выдержкой времени срабатывания и без нее (при наличии дифференциального тока). Использование устройств с задержкой срабатывания (обозначается S) позволяет обеспечить селективность в собранной схеме.
Как работает УЗО с заземлением и без него?
По какому принципу работает УЗО в двухпроводной сети, если заземление отсутствует? Когда появится изоляционный пробой на корпусе прибора, устройство защитного отключения не сработает, потому что корпус не заземлён и пути для прохождения токовой утечки нет. При этом корпус прибора будет под опасным для человеческой жизни потенциалом.
В момент прикосновения человека к корпусу прибора, токовая утечка будет уходить на землю через его тело. Когда величина этого тока сравняется с порогом срабатывания УЗО, произойдёт отключение, и из питающей сети напряжение не будет подаваться на повреждённый электроприбор.
Сколько по времени будет находиться человек под действием токовой утечки, зависит от уставки срабатывания УЗО.
Хоть оно и отключится быстро, этого времени может быть вполне достаточно, чтобы получить серьёзную электротравму.
А вот если бы корпус был подсоединён к защитному заземлению, УЗО отреагировало и отключилось бы сразу, как только произошёл изоляционный пробой.
Как видите, схема подключения УЗО без заземления реально применима, однако не даёт 100 % гарантии безопасности. Но так как в старых домах в основном выполнена двухпроводная электрическая сеть, а переделать её на трёхпроводную не так-то просто, единственным выходом защиты оборудования и человека является монтаж УЗО.
Наглядный принцип работы УЗО без заземления на видео:
Принцип работы этого устройства основан на измерительных процессах. Регистрируется величина тока на входе и на выходе. Если эти показания одинаковы, то нет повода для срабатывания. Как только в сети появится токовая утечка, величина на выходе станет меньше, и устройство отключит повреждённый участок. УЗО работает за счёт расцепляющего механизма в связке с электромагнитным реле.
Монтаж в доме без заземления
Заземление — необходимый элемент при подключении потребителей. Такая линия предполагает использование трёх проводов: фазового, нулевого и земли. Но как часто бывает, в высотных домах используется только двухпроводная линия, состоящая из фазы и ноля. Хоть правилами не указано, но возможность установить УЗО в двухпроводной линии имеется.
Пример подключения к двухпроводной линии
Например, дома имеется две комнаты, в одной установлен бойлер, в другой стиральная машина. Требуется поставить УЗО на каждое устройство, линия однофазная, то есть двухпроводная. Электросеть на остальные розетки и освещение выполняется отдельно. Последовательность этапов установки заключается в следующем:
Энергопоставляющая компания устанавливает свой автоматический выключатель, тем самым ограничивая максимальное потребление тока в квартире. Этот выключатель называется вводным, имеет два полюса и устанавливается перед прибором учёта энергии.
С него два провода поступают на вход счётчика и с его выхода подаются на дифференциальное устройство. Фазовый провод (коричневый) подключается к клемме обозначенной буквой L, а нулевой (синий) к клемме c маркировкой N.
С выхода дифференциального устройства фазовый провод заходит на однополюсные автоматические выключатели в количестве трёх штук. Два на каждую комнату и один на освещение. Нулевой проводник подключается к общей шине. Шина представляет собой проводящую рейку с некоторым количеством зажимов для разветвления проводов.
Далее фазовый провод с выхода автомата подключается к входам L каждого из двух УЗО, а нулевой проводник с шины заводится на клеммы УЗО с обозначением N.
После того как первичная коммутация выполнена, от выходов УЗО напрямую пробрасывается кабель до защищаемых розеток в каждую комнату
Важно проследить, чтобы фазовый и нулевой провод не имели отводов и подключались именно к выходу УЗО.
Выход автоматического выключателя подключается на распределительную коробку для организации освещения и подключения остальных розеток. Туда же заводится ноль с общей шины.
При возникновении пробоя на корпусе стиральной машинки во время его касания через часть тела начнёт протекать электрический ток и УЗО моментально срабатывает, при этом отключив только линию, подходящую к стиральной машинке.
Подбор требуемых параметров для устройств защиты происходит в зависимости от характеристик электрической линии и применяемых приборов. Важным правилом является то, что значение номинального тока предыдущего устройства защиты, выбирается не меньше последующего. Например, вводный автомат 25 А, УЗО 16 А, автоматические выключатели на 16 А и 10 А.
Стоит отметить, что УЗО по внешнему виду напоминает дифференциальный автомат, но существуют визуальные способы отличия:
- некоторые производители указывают на лицевой стороне название прибора;
- для устройства защитного отключения на корпусе указывается только цифра с величиной номинального тока без типа характеристики;
- нарисованная на корпусе принципиальная схема не содержит обмоток расцепителей.
Как определить место расположения УЗО
УЗО — это устройство защиты от токов утечки. Оно необходимо для отслеживания повреждения фазной изоляции, а также для защиты человека от поражения электрическим током при прикосновении к токоведущим частям. Схема подключения УЗО составляется исходя их имеющейся схемы расположения электроприборов и осветительной техники. При этом уже должны быть известны мощности приборов, рассчитано сечение кабелей, выбраны параметры защитных автоматов.
Начинать надо с расположения на плане всех приборов
Как разработать схему проводки
Сначала рисуется на плане дома или квартиры положение всей планируемой техники и устройств, которые вы собираетесь использовать. Также наносятся светильники, бра и другие осветительные приборы. Возле каждого энергопотребителя проставляется мощность. Далее продумывают разбиение потребителей на группы. Процесс достаточно сложный, учитывать приходится много факторов:
- Освещение и розетки в жилых помещениях желательно разнести в две группы: одна розеточная, другая на освещение.
- Для мощных потребителей проложить отдельные линии питания. К этой категории условно можно отнести все приборы с мощностью выше 4 кВт.
- На розетки и освещение в ванну и кухню — отельные группы. В кухне снова-таки, освещение отдельно от розеток. В ванной можно совместить, но только бойлер и электрический полотенцесушитель должны иметь отдельную линию электропитания.
Теперь разбиваем на группы
При всем при этом, большое количество групп — это накладно на стадии устройства. Потребуется много проводов, защитных устройств, большой распределительный щит для размещения всех автоматов и УЗО. Зато в эксплуатации будет проще.
После того, как потребители разбиты на группы, считают мощности оборудования, которое будет подключатся к каждой из групп. Исходя из этих данных, определяют сечение кабелей для проводки, пути и способы их прокладки. Уже после этого можно разрабатывать схему проводки и защитных устройств. Схема подключения УЗО разрабатывается на основе схемы проводки. Вернее, это составляющая общей проводки.
Принцип построения схем подключения УЗО
Даже в небольших домах групп бывает не меньше пяти:
- Линия на освещение в комнатах и коридоре.
- Линия на розетки в комнатах и коридоре.
- На ванную комнату.
- На кухню.
- Холодильник.
- Стиральная машина.
Это тот минимум, который не обойти. Такой набор для небольших квартир, в домах обычно значительно больше. В частном доме необходимо освещение на улице, питание насоса и т.д. Каждую из линий нужно защитить. Исключение — линия на освещение в комнатах. Тут допускается без дополнительных устройств защиты.
Схема подключения УЗО в частном доме. Один из вариантов
Схема подключения УЗО разрабатывается на основании разбивки на группы. Теперь группы объединяем. Одно УЗО может защищать несколько групп. Обычно объединение групп проводят по помещениям, но стоит думать и о комфортности поиска повреждений в темноте. Именно поэтому освещение обычно выводят отдельно. УЗО на эту группу часто не ставят, так как прикоснуться к корпусу люстры или встроенного светильника можно только специально.
Схемы для трехфазной сети
В частном доме может быть проложена линия напряжением 380 В. В промышленности такие сети монтируют всегда.
Общее УЗО для 3-фазной сети + счетчики
Используется четырехполюсное устройство защиты. С каждой стороны у него 3 фазных контакта и 1 для нейтрали. Необходимость прокладки нулевого провода обусловлена неравномерным распределением нагрузки по линиям A, B и C. Их разводят по дому для подключения 1-фазных электроприемников и только к самым мощным, рассчитанным на напряжение 380 В, подсоединяют сразу все 3.
Схема общего УЗО для 3-фазной сети.
Недостаток данного решения состоит в применении аппарата защиты с низкой чувствительностью. Это объясняется большими естественными утечками.
Общее УЗО для 3-фазной сети + групповое УЗО
Более дорогая, но практичная и безопасная схема. Подключение производится так же, как в аналогичном варианте для 1-фазной сети, только используется большее количество проводов. Рекомендуется соблюдать цветовую маркировку, чтобы не перепутать линии A, B и C.
Схема группового УЗО.
На вводе устанавливают аппарат селективного типа (с задержкой срабатывания) на 4 полюса. На группах с симметричной нагрузкой — 3-полюсные. Нулевой проводник им не нужен, поскольку токи в линиях A, B и C взаимно гасятся.